Publications by authors named "Alessio Tamborini"

Non-invasive diagnostic modalities are integral to cardiovascular care; however, current systems primarily measure peripheral pressure, limiting the breadth of cardiovascular prognostication. We report a novel approach for extracting left side heart sounds using a brachial cuff device. The technique leverages brachial cuff device enhanced signal resolution to capture pressure fluctuations generated by cardiohemic system vibrations, the sound pressure waveform.

View Article and Find Full Text PDF

Radial applanation tonometry is a well-established technique for hemodynamic monitoring and is becoming popular in affordable non-invasive wearable healthcare electronics. To assess the central aortic pressure using radial-based measurements, there is an essential need to develop mathematical approaches to estimate the central pressure waveform. In this study, we propose a new Fourier-based machine learning (F-ML) methodology to transfer non-invasive radial pressure measurements to the central pressure waveform.

View Article and Find Full Text PDF

Background: Noninvasive pulse waveform analysis is valuable for central cardiovascular assessment, yet controversies persist over its validity in peripheral measurements. Our objective was to compare waveform features from a cuff system with suprasystolic blood pressure hold with an invasive aortic measurement.

Methods And Results: This study analyzed data from 88 subjects undergoing concurrent aortic catheterization and brachial pulse waveform acquisition using a suprasystolic blood pressure cuff system.

View Article and Find Full Text PDF

Cuff-based pulse waveform acquisition (CBPWA) devices are reliable solutions for non-invasive cardiovascular diagnostics. However, poor signal resolution has limited clinical applications. This study aims to demonstrate the improved signal quality of CBPWA devices by implementing passive pneumatic low-pass filters (pLPF).

View Article and Find Full Text PDF

Cell migration, critical to numerous biological processes, can be guided by surface topography. Studying the effects of topography on cell migration is valuable for enhancing our understanding of directional cell migration and for functionally engineering cell behavior. However, fabrication limitations constrain topography studies to geometries that may not adequately mimic physiological environments.

View Article and Find Full Text PDF