We consider scattering processes where a quantum system comprises an inner subsystem and a boundary and is subject to Haar-averaged random unitaries acting on the boundary-environment Hilbert space only. We show that, regardless of the initial state, a single scattering event will disentangle the unconditional state (i.e.
View Article and Find Full Text PDFPrecision gravimetry is key to a number of scientific and industrial applications, including climate change research, space exploration, geological surveys and fundamental investigations into the nature of gravity. A variety of quantum systems, such as atom interferometry and on-chip-Bose-Einstein condensates have thus far been investigated to this aim. Here, we propose a new method which involves using a quantum optomechanical system for measurements of gravitational acceleration.
View Article and Find Full Text PDFUnder the eigenstate thermalization hypothesis (ETH), quantum-quenched systems equilibrate towards canonical, thermal ensembles. While at first glance the ETH might seem a very strong hypothesis, we show that it is indeed not only sufficient but also necessary for thermalization. More specifically, we consider systems coupled to baths with well-defined macroscopic temperature and show that whenever all product states thermalize then the ETH must hold.
View Article and Find Full Text PDFWe introduce a class of noisy quantum cellular automata on a qubit lattice that includes all classical Markov chains, as well as maps where quantum coherence between sites is allowed to build up over time. We apply such a construction to the problem of excitation transfer through 1D lattices, and compare the performance of classical and quantum dynamics with equal local transition probabilities. Our discrete approach has the merits of stripping down the complications of the open system dynamics, of clearly isolating coherent effects, and of allowing for an exact treatment of conditional dynamics, all while capturing a rich variety of dynamical behaviors.
View Article and Find Full Text PDFWe propose a general framework to effectively "open" a high-Q resonator, that is, to release the quantum state initially prepared in it in the form of a traveling electromagnetic wave. This is achieved by employing a mediating mode that scatters coherently the radiation from the resonator into a one-dimensional continuum of modes such as a waveguide. The same mechanism may be used to "feed" a desired quantum field to an initially empty cavity.
View Article and Find Full Text PDFWe demonstrate that the Rényi-2 entropy provides a natural measure of information for any multimode Gaussian state of quantum harmonic systems, operationally linked to the phase-space Shannon sampling entropy of the Wigner distribution of the state. We prove that, in the Gaussian scenario, such an entropy satisfies the strong subadditivity inequality, a key requirement for quantum information theory. This allows us to define and analyze measures of Gaussian entanglement and more general quantum correlations based on such an entropy, which are shown to satisfy relevant properties such as monogamy.
View Article and Find Full Text PDFControllability--the possibility of performing any target dynamics by applying a set of available operations--is a fundamental requirement for the practical use of any physical system. For finite-dimensional systems, such as spin systems, precise criteria to establish controllability, such as the so-called rank criterion, are well known. However, most physical systems require a description in terms of an infinite-dimensional Hilbert space whose controllability properties are poorly understood.
View Article and Find Full Text PDFWe determine a general upper bound for the steady-state entanglement achievable by continuous feedback for a system of any number of bosonic degrees of freedom. We apply such a bound to the specific case of parametric interactions--the most common practical way to generate entanglement in quantum optics--and single out optimal feedback strategies that achieve the maximal entanglement. We also consider the case of feedback schemes entirely restricted to local operations and compare their performance to the optimal, generally nonlocal, schemes.
View Article and Find Full Text PDFPhys Rev Lett
March 2006
A multimode uncertainty relation (generalizing the Robertson-Schrödinger relation) is derived as a necessary constraint on the second moments of n pairs of canonical operators. In turn, necessary conditions for the separability of multimode continuous variable states under (m+n)-mode bipartitions are derived from the uncertainty relation. These conditions are proven to be necessary and sufficient for (1+n)-mode Gaussian states and for (m+n)-mode bisymmetric Gaussian states.
View Article and Find Full Text PDFWe investigate the possibility of realizing effective quantum gates between two atoms in distant cavities coupled by an optical fiber. We show that highly reliable swap and entangling gates are achievable. We exactly study the stability of these gates in the presence of imperfections in coupling strengths and interaction times and prove them to be robust.
View Article and Find Full Text PDFWe present a theoretical method to determine the multipartite entanglement between different partitions of multimode, fully or partially symmetric Gaussian states of continuous variable systems. For such states, we determine the exact expression of the logarithmic negativity and show that it coincides with that of equivalent two-mode Gaussian states. Exploiting this reduction, we demonstrate the scaling of the multipartite entanglement with the number of modes and its reliable experimental estimate by direct measurements of the global and local purities.
View Article and Find Full Text PDFWe classify the entanglement of two-mode Gaussian states according to their degree of total and partial mixedness. We derive exact bounds that determine maximally and minimally entangled states for fixed global and marginal purities. This characterization allows for an experimentally reliable estimate of continuous variable entanglement based on measurements of purity.
View Article and Find Full Text PDF