Publications by authors named "Alessio Melli"

Rotational spectroscopy represents an invaluable tool for several applications: from the identification of new molecules in interstellar objects to the characterization of van der Waals complexes, but also for the determination of very accurate molecular structures and for conformational analyses. In this work, we used high-resolution rotational spectroscopic techniques in combination with high-level quantum-chemical calculations to address all these aspects for two isomers of cyanofuran, namely 2-furonitrile and 3-furonitrile. In particular, we have recorded and analyzed the rotational spectra of both of them from 6 to 320 GHz; rotational transitions belonging to several singly-substituted isotopologues have been identified as well.

View Article and Find Full Text PDF

Several interstellar molecules are highly reactive unsaturated carbon chains, which are unstable under terrestrial conditions. Laboratory studies in support of their detection in space thus face the issue of how to produce these species and how to correctly model their rotational energy levels. In this work, we introduce a general approach for producing and investigating unsaturated carbon chains by means of selected test cases.

View Article and Find Full Text PDF

The processes and reactions that led to the formation of the first biomolecules on Earth play a key role in the highly debated theme of the origin of life. Whether the first chemical building blocks were generated on Earth (endogenous synthesis) or brought from space (exogenous delivery) is still unanswered. The detection of complex organic molecules in the interstellar medium provides valuable support to the latter hypothesis.

View Article and Find Full Text PDF

The accurate determination of equilibrium structures for isolated molecules plays a central role in the evaluation and interpretation of stereoelectronic, thermodynamic, and spectroscopic properties. For small semi-rigid systems, state-of-the-art quantum-chemical computations can rival the most sophisticated experimental results. For larger molecules, cheaper yet accurate approaches need to be defined.

View Article and Find Full Text PDF

The ubiquitous role of water and its amphiprotic nature call for a deeper insight into the physical-chemical properties of hydrogen-bonded complexes formed with building blocks of biomolecules. In this work, the semiexperimental (SE) approach combined with the template model (TM) protocol allowed the accurate determination of the equilibrium structure of two isomeric forms of the imidazole-water complex. In this procedure, the integration of experiment (thanks to a recent rotational spectroscopy investigation) and theory is exploited, also providing the means of assessing the reliability and accuracy of different quantum-chemical approaches.

View Article and Find Full Text PDF

Phenylmethanimine is an aromatic imine with a twofold relevance in chemistry: organic synthesis and astrochemistry. To tackle both aspects, a multidisciplinary strategy has been exploited and a new, easily accessible synthetic approach to generate stable imine-intermediates in the gas phase and in solution has been introduced. The combination of this formation pathway, based on the thermal decomposition of hydrobenzamide, with a state-of-the-art computational characterization of phenylmethanimine laid the foundation for its first laboratory observation by means of rotational electric resonance spectroscopy.

View Article and Find Full Text PDF

Several gas-phase spectroscopic investigations have focused on a better understanding of the nature of weak, non-covalent interactions in model systems. However, their characterization and interpretation are still far from being satisfactory. A promising route to fill this gap is offered by strategies in which high-resolution rotational spectroscopy is deeply integrated with state-of-the-art quantum-chemical methodology to accurately determine intermolecular parameters and interaction energies, with the latter interpreted by means of powerful energy decomposition analyses (EDAs).

View Article and Find Full Text PDF

The conformational isomerism of isopropylamine and n-propylamine has been investigated by means of an integrated strategy combining high-level quantum-chemical calculations and high-resolution rotational spectroscopy. The equilibrium structures (and thus equilibrium rotational constants) as well as relative energies of all conformers have been computed using the so-called "cheap" composite scheme, which combines the coupled-cluster methodology with second-order Møller-Plesset perturbation theory for extrapolation to the complete basis set. Methods rooted in the density functional theory have been instead employed for computing spectroscopic parameters and for accounting for vibrational effects.

View Article and Find Full Text PDF