Nano-sized particles functionalised with short single-stranded (ss)DNAs can act as detectors of complementary DNA strands. Here we consider tri-block-copolymer-based, self-assembling DNA-coated nanoparticles. The copolymers are chemically linked to the DNA strands via azide (N3) groups.
View Article and Find Full Text PDFWe measure by experiment and particle-based simulation the rheology of concentrated, non-Brownian droplet emulsions functionalized with surface-bound single-stranded (ss), "sticky," DNA. In the absence of ssDNA, the emulsion viscosity increases with the dispersed phase volume fraction ϕ, before passing through a liquid-solid transition at a critical ϕ_{c} related to random close packing. Introducing ssDNA leads to a liquid-solid transition at ϕ<ϕ_{c}, the onset being set by the droplet valency N and the ssDNA concentration (or simulated binding strength ε).
View Article and Find Full Text PDFWe report experiments that show rapid crystallization of colloids tethered to an oil-water interface in response to laser illumination. This light-induced transition is due to a combination of long-ranged thermophoretic pumping and local optical binding. We show that the flow-induced force on the colloids can be described as the gradient of a potential.
View Article and Find Full Text PDFToday, colloids are widely employed in various products from creams and coatings to electronics. The ability to control their chemical, optical, or electronic features by controlling their size and shape explains why these materials are so widely preferred. Nevertheless, altering some of these properties may also lead to some undesired side effects, one of which is an increase in optical scattering upon concentration.
View Article and Find Full Text PDFThree-dimensional DNA networks, composed of tri- or higher valent nanostars with sticky, single-stranded DNA overhangs, have been previously studied in the context of designing thermally responsive, viscoelastic hydrogels. In this work, we use linker-mediated gels, where the sticky ends of two trivalent nanostars are connected through the complementary sticky ends of a linear DNA duplex. We can design this connection to be either rigid or flexible by introducing flexible, non-binding bases.
View Article and Find Full Text PDFAqueous colloidal suspensions, both man-made and natural, are part of our everyday life. The applicability of colloidal suspensions, however, is limited by the range of conditions over which they are stable. Here we report a novel type of highly monodisperse raspberry-like colloids, which are prepared in a single-step synthesis that relies on simultaneous dispersion and emulsion polymerisation.
View Article and Find Full Text PDFMany industrial soft materials include oil-in-water (O/W) emulsions at the core of their formulations. By using tuneable interface stabilizing agents, such emulsions can self-assemble into complex structures. DNA has been used for decades as a thermoresponsive, highly specific binding agent between hard and, recently, soft colloids.
View Article and Find Full Text PDFA key objective in DNA-based material science is understanding and precisely controlling the mechanical properties of DNA hydrogels. We perform microrheology measurements using diffusing wave spectroscopy (DWS) to investigate the viscoelastic behavior of a hydrogel made of Y-shaped DNA (Y-DNA) nanostars over a wide range of frequencies and temperatures. We observe a clear liquid-to-gel transition across the melting temperature region for which the Y-DNA bind to each other.
View Article and Find Full Text PDFWe report a study of reversible adsorption of DNA-coated colloids on complementary functionalized oil droplets. We show that it is possible to control the surface coverage of oil droplets using colloidal particles by exploiting the fact that, during slow adsorption, compositional arrest takes place well before structural arrest occurs. As a consequence, we can prepare colloid-coated oil droplets with a "frozen" degree of loading but with fully ergodic colloidal dynamics on the droplets.
View Article and Find Full Text PDF