Publications by authors named "Alessio Andreoni"

The endosymbiotic theory posits that ancient eukaryotic cells engulfed O-consuming prokaryotes, which protected them against O toxicity. Previous studies have shown that cells lacking cytochrome c oxidase (COX), required for respiration, have increased DNA damage and reduced proliferation, which could be improved by reducing O exposure. With recently developed fluorescence lifetime microscopy-based probes demonstrating that the mitochondrion has lower [O] than the cytosol, we hypothesized that the perinuclear distribution of mitochondria in cells may create a barrier for O to access the nuclear core, potentially affecting cellular physiology and maintaining genomic integrity.

View Article and Find Full Text PDF

The biological relevance of nitric oxide (NO) and reactive oxygen species (ROS) in signaling, metabolic regulation, and disease treatment has become abundantly clear. The dramatic change in NO/ROS processing that accompanies a changing oxygen landscape calls for new imaging tools that can provide cellular details about both [O ] and the production of reactive species. Myoglobin oxidation to the met state by NO/ROS is a known sensor with absorbance changes in the visible range.

View Article and Find Full Text PDF

Oxygen (O) is a critical metabolite for cellular function as it fuels aerobic cellular metabolism; further, it is a known regulator of gene expression. Monitoring oxygenation within cells and organelles can provide valuable insights into how O, or lack thereof, both influences and responds to cell processes. In recent years, fluorescence lifetime imaging microscopy (FLIM) has been used to track several probe concentration independent intracellular phenomena, such as pH, viscosity, and, in conjunction with Förster resonance energy transfer (FRET), protein-protein interactions.

View Article and Find Full Text PDF

Oxidation-reduction chemistry is fundamental to the metabolism of all living organisms, and hence quantifying the principal redox players is important for a comprehensive understanding of cell metabolism in normal and pathological states. In mammalian cells, this is accomplished by measuring oxygen partial pressure (pO) in parallel with free and enzyme-bound reduced nicotinamide adenine dinucleotide (phosphate) [H] (NAD(P)H) and flavin adenine dinucleotide (FAD, a proxy for NAD). Previous optical methods for these measurements had accompanying problems of cytotoxicity, slow speed, population averaging, and inability to measure all redox parameters simultaneously.

View Article and Find Full Text PDF

Key Points: We developed a novel metabolic imaging approach that provides direct measures of the rate of mitochondrial energy conversion with single-cell and subcellular resolution by evaluating NADH autofluorescence kinetics during the mitochondrial redox after cyanide experiment (mitoRACE). Measures of mitochondrial NADH flux by mitoRACE are sensitive to physiological and pharmacological perturbations in vivo. Metabolic imaging with mitoRACE provides a highly adaptable platform for evaluating mitochondrial function in vivo and in single cells with potential for broad applications in the study of energy metabolism.

View Article and Find Full Text PDF

Several turn-on RNA aptamers that activate small-molecule fluorophores have been selected in vitro. Among these, the ~30 nucleotide Mango-III is notable because it binds the thiazole orange derivative TO1-Biotin with high affinity and fluoresces brightly (quantum yield 0.55).

View Article and Find Full Text PDF

The extraction of fluorophore lifetimes in a biological sample provides useful information about the probe environment that is not readily available from fluorescence intensity alone. Cell membrane potential, pH, concentration of oxygen ([O]), calcium ([Ca]), NADH and other ions and metabolites are all regularly measured by lifetime-based techniques. These measurements provide invaluable knowledge about cell homeostasis, metabolism and communication with the cell environment.

View Article and Find Full Text PDF

Molecular oxygen is an important reporter of metabolic and physiological status at the cellular and tissue level and its concentration is used for the evaluation of many diseases (e.g.: cancer, coronary artery disease).

View Article and Find Full Text PDF
Article Synopsis
  • Advances in biomimetic microelectronics enable the creation of patterned protein and cell assemblies for in vitro metabolic engineering that allows researchers to understand and potentially control cell metabolism on a chip.
  • A new method has been developed that assembles a DNA origami-templated enzymatic cascade on gold electrodes, using Au-S chemistry to anchor a monolayer of DNA origami, resulting in a biomimetic device that blends biochemical and electronic components.
  • By applying a specific electrical potential, the system facilitates electron transfer from enzymes to electrodes, creating a current signal that reflects enzyme activity, with the ability to fine-tune the system by adjusting enzyme distance.
View Article and Find Full Text PDF

Oxygen (O2) is one of the most important biometabolites. In abundance, it serves as the limiting terminus of aerobic respiratory chains in the mitochondria of higher organisms; in deficit, it is a potent determinant of development and regulation of other physiological and therapeutic processes. Most knowledge on intracellular and interstitial concentration ([O2]) is derived from mitochondria isolated from cells or tissue biopsies, providing detailed but nonnative insight into respiratory chain function.

View Article and Find Full Text PDF

Several RNA aptamers that bind small molecules and enhance their fluorescence have been successfully used to tag and track RNAs in vivo, but these genetically encodable tags have not yet achieved single-fluorophore resolution. Recently, Mango-II, an RNA that binds TO1-Biotin with ∼1 nM affinity and enhances its fluorescence by >1500-fold, was isolated by fluorescence selection from the pool that yielded the original RNA Mango. We determined the crystal structures of Mango-II in complex with two fluorophores, TO1-Biotin and TO3-Biotin, and found that despite their high affinity, the ligands adopt multiple distinct conformations, indicative of a binding pocket with modest stereoselectivity.

View Article and Find Full Text PDF

Natural light-harvesting systems spatially organize densely packed chromophore aggregates using rigid protein scaffolds to achieve highly efficient, directed energy transfer. Here, we report a synthetic strategy using rigid DNA scaffolds to similarly program the spatial organization of densely packed, discrete clusters of cyanine dye aggregates with tunable absorption spectra and strongly coupled exciton dynamics present in natural light-harvesting systems. We first characterize the range of dye-aggregate sizes that can be templated spatially by A-tracts of B-form DNA while retaining coherent energy transfer.

View Article and Find Full Text PDF

Fluorescent labeling of biomacromolecules enjoys increasing popularity for structural, mechanistic, and microscopic investigations. Its success hinges on the ability of the dye to alternate between bright and dark states. Förster resonance energy transfer (FRET) is an important source of fluorescence modulation.

View Article and Find Full Text PDF

Taking inspiration from photosynthetic mechanisms in natural systems, we introduced a light-sensitive photo protective quenching element to an artificial light-harvesting antenna model to control the flow of energy as a function of light intensity excitation. The orange carotenoid protein (OCP) is a nonphotochemical quencher in cyanobacteria: under high-light conditions, the protein undergoes a spectral shift, and by binding to the phycobilisome, it absorbs excess light and dissipates it as heat. By the use of DNA as a scaffold, an antenna system made of organic dyes (Cy3 and Cy5) was constructed, and OCP was assembled on it as a modulated quenching element.

View Article and Find Full Text PDF

Proteins have evolved to carry out nearly all the work required of living organisms within complex inter- and intracellular environments. However, systematically investigating the range of interactions experienced by a protein that influence its function remains challenging. DNA nanostructures are emerging as a convenient method to arrange a broad range of guest molecules.

View Article and Find Full Text PDF

Fluorescent protein labeling has been an indispensable tool in many applications of biochemical, biophysical, and cell biological research. Although detailed information about the labeling stoichiometry and exact location of the label is often not necessary, for other purposes, this information is crucial. We have studied the potential of top-down electrospray ionization (ESI)-15T Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to study the degree and positioning of fluorescent labeling.

View Article and Find Full Text PDF

A detection scheme is described by which the histamine contents of biological samples can be established. The scheme is based on the use of methylamine dehydrogenase (MADH) which converts primary amines into the corresponding aldehydes and ammonia. The generated reducing equivalents are subsequently transferred to the physiological partner of MADH, amicyanin, which thereby is converted from the oxidized blue-colored form into the reduced colorless form.

View Article and Find Full Text PDF

A small library of truncated neomycin-conjugates is prepared by consecutive removal of 2,6-diaminoglucose rings, oxidation-reductive amination of ribose, oxidation-conjugation of aminopyridine/aminoquinoline and finally dimerization. The dimeric conjugates were evaluated for antibacterial activity with a unique hemocyanin-based biosensor. Based on the outcome of these results, a second-generation set of monomeric conjugates was prepared and found to display significant antibacterial activity, in particular with respect to kanamycin-resistant

View Article and Find Full Text PDF