Publications by authors named "Alessia Tonnetti"

Interventional radiology is based on minimally invasive procedures that allow diagnosis and percutaneous treatment of diseases in almost all organ systems. Such procedures have many benefits, but they also contribute significantly to collective radiation dose. In this regard, effective dose (E) is a convenient quantity to estimate patients' stochastic radiation risk.

View Article and Find Full Text PDF

The purpose of this study was to compare the dosimetric properties of small field electron beams shaped by circular Cerrobend blocks and stainless steel tubular applicators. Percentage depth dose curves, beam profiles, and output factors of small-size circular fields from 2 to 5 cm diameter, obtained either by tubular applicators and Cerrobend blocks, were measured for 6, 10, and 15 MeV electron beam energies. All measurements were performed using a PTW microDiamond 60019 premarket prototype.

View Article and Find Full Text PDF

The purpose of this work has been to dosimetrically investigate four fluoroscopically guided interventions: the percutaneous vertebroplasty (PVP), the percutaneous disc decompression (PDD), the radiofrequency medial branch neurolysis (RF) (hereafter named spine procedures), and the endovascular treatment for the critical limb ischemia (CLI). The X-ray equipment used was a Philips Integris Allura Xper FD20 imaging system provided with a dose-area product (DAP) meter. The parameters investigated were: maximum skin dose (MSD), air kerma (Ka,r), DAP, and fluoroscopy time (FT).

View Article and Find Full Text PDF

Purpose: The aim of this work is to investigate the behavior of a single crystal diamond diode (SCDD) for volumetric modulated arc therapy (VMAT) dose verifications. This delivery technique is one of the most severe test of a dosimeter performance due to the modulation of the dose rate achieved by simultaneously changing the velocity of the gantry and the position of the collimator leaves. The performed measurements with VMAT photon beams can therefore contribute to an overall global validation of the device to be used in dose distribution verifications.

View Article and Find Full Text PDF