The avidin-biotin technology has many applications, including molecular detection; immobilization; protein purification; construction of supramolecular assemblies and artificial metalloenzymes. Here we present the recombinant expression of novel biotin-binding proteins from bacteria and the purification and characterization of a secreted burkavidin from the human pathogen Burkholderia pseudomallei. Expression of the native burkavidin in Escherichia coli led to periplasmic secretion and formation of a biotin-binding, thermostable, tetrameric protein containing an intra-monomeric disulphide bond.
View Article and Find Full Text PDFArtificial metalloenzymes result from the introduction of a catalytically competent non-native metal cofactor within a protein environment. In the present contribution, we summarize the recent achievements in the design and the optimization of such protein-based hybrid catalysts, with an emphasis on enantioselective transformations. The second part outlines the milestones required to achieve en masse production, screening and directed evolution of artificial metalloenzymes.
View Article and Find Full Text PDFThe mode of action of precious metal anticancer metallodrugs is generally believed to involve DNA as a target. However, the poor specificity of such drugs often requires high doses and leads to undesirable side-effects. With the aim of improving the specificity of a ruthenium piano-stool complex towards DNA, we employed a presenter protein strategy based on the biotin-avidin technology.
View Article and Find Full Text PDF