We study the interaction of a laser cavity-soliton microcomb with an externally coupled, co-propagating tunable CW pump, observing parametric Kerr interactions which lead to the formation of both a cross-phase modulation and a four-wave mixing replica of the laser cavity-soliton. We compare and explain the dependence of the microcomb spectra from both the cavity-soliton and pump parameters, demonstrating the ability to adjust the microcomb externally without breaking or interfering with the soliton state. The parametric nature of the process agrees with numerical simulations.
View Article and Find Full Text PDFThis joint issue of Optics Express and Optical Materials Express showcases 29 articles that report the latest advancements in nonlinear optics. These articles include contributions from authors who participated in the Optica Nonlinear Optics Topical Meeting, which took place in Honolulu, Hawaii, from July 10th to July 14th, 2023. The conference was organized by Optica (formerly known as OSA).
View Article and Find Full Text PDFComplex media have emerged as a powerful and robust framework to control light-matter interactions designed for task-specific optical functionalities. Studies on wavefront shaping through disordered systems have demonstrated optical wave manipulation capabilities beyond conventional optics, including aberration-free and subwavelength focusing. However, achieving arbitrary and simultaneous control over the spatial and temporal features of light remains challenging.
View Article and Find Full Text PDFControlling the transmission of broadband optical pulses in scattering media is a critical open challenge in photonics. To date, wavefront shaping techniques at optical frequencies have been successfully applied to control the spatial properties of multiple-scattered light. However, a fundamental restriction in achieving an equivalent degree of control over the temporal properties of a broadband pulse is the limited availability of experimental techniques to detect the coherent properties (i.
View Article and Find Full Text PDFTerahertz time-domain imaging targets the reconstruction of the full electromagnetic morphology of an object. In this spectral range, the near-field propagation strongly affects the information in the space-time domain in items with microscopic features. While this often represents a challenge, as the information needs to be disentangled to obtain high image fidelity, here, we show that such a phenomenon can enable three-dimensional microscopy.
View Article and Find Full Text PDFLaser cavity-soliton microcombs are robust optical pulsed sources, usually implemented with a microresonator-filtered fibre laser. In such a configuration, a nonlinear microcavity converts the narrowband pulse resulting from bandwidth-limited amplification to a background-free broadband microcomb. Here, we theoretically and experimentally study the soliton conversion efficiency between the narrowband input pulse and the two outputs of a four-port integrated microcavity, namely the 'Drop' and 'Through' ports.
View Article and Find Full Text PDFScattering-assisted synthesis of broadband optical pulses is recognized to have a cross-disciplinary fundamental and application importance. Achieving full-waveform synthesis generally requires means for assessing the instantaneous electric field, i.e.
View Article and Find Full Text PDFIn many disciplines, states that emerge in open systems far from equilibrium are determined by a few global parameters. These states can often mimic thermodynamic equilibrium, a classic example being the oscillation threshold of a laser that resembles a phase transition in condensed matter. However, many classes of states cannot form spontaneously in dissipative systems, and this is the case for cavity solitons that generally need to be induced by external perturbations, as in the case of optical memories.
View Article and Find Full Text PDFWe theoretically present a design of self-starting operation of microcombs based on laser-cavity solitons in a system composed of a micro-resonator nested in and coupled to an amplifying laser cavity. We demonstrate that it is possible to engineer the modulational-instability gain of the system's zero state to allow the start-up with a well-defined number of robust solitons. The approach can be implemented by using the system parameters, such as the cavity length mismatch and the gain shape, to control the number and repetition rate of the generated solitons.
View Article and Find Full Text PDFTerahertz (THz) imaging is a rapidly emerging field, thanks to many potential applications in diagnostics, manufacturing, medicine and material characterisation. However, the relatively coarse resolution stemming from the large wavelength limits the deployment of THz imaging in micro- and nano-technologies, keeping its potential benefits out-of-reach in many practical scenarios and devices. In this context, single-pixel techniques are a promising alternative to imaging arrays, in particular when targeting subwavelength resolutions.
View Article and Find Full Text PDFWe report on 'slow' pulsing dynamics in a silica resonator-based laser system: by nesting a high-Q rod-resonator inside an amplifying fiber cavity, we demonstrate that trains of microsecond pulses can be generated with repetition rates in the hundreds of kilohertz. We show that such pulses are produced with a period equivalent to several hundreds of laser cavity roundtrips via the interaction between the gain dynamics in the fiber cavity and the thermo-optical effects in the high-Q resonator. Experiments reveal that the pulsing properties can be controlled by adjusting the amplifying fiber cavity parameters.
View Article and Find Full Text PDFNanohybrid materials based on nanoparticles of the intrinsically microporous polymer PIM-1 and graphene oxide (GO) are prepared from aqueous dispersions with a reprecipitation method, resulting in the surface of the GO sheets being decorated with nanoparticles of PIM-1. The significant blueshift in fluorescence signals for the GO/PIM-1 nanohybrids indicates modification of the optoelectronic properties of the PIM-1 in the presence of the GO due to their strong interactions. The stiffening in the Raman G peak of GO (by nearly 6 cm) further indicates p-doping of the GO in the presence of PIM.
View Article and Find Full Text PDFModern optical systems increasingly rely on complex physical processes that require accessible control to meet target performance characteristics. In particular, advanced light sources, sought for, for example, imaging and metrology, are based on nonlinear optical dynamics whose output properties must often finely match application requirements. However, in these systems, the availability of control parameters (e.
View Article and Find Full Text PDFWe propose a scheme for bifurcation control in micro-cavities based on the interplay between the ultrafast Kerr effect and a slow nonlinearity, such as thermo-optical, free-carriers-induced, or opto-mechanical one. We demonstrate that Hopf bifurcations can be efficiently controlled with a low energy signal via four-wave mixing. Our results show that new strategies are possible for designing efficient micro-cavity-based oscillators and sensors.
View Article and Find Full Text PDFIn this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity.
View Article and Find Full Text PDFNonlinear optical processes are one of the most important tools in modern optics with a broad spectrum of applications in, for example, frequency conversion, spectroscopy, signal processing and quantum optics. For practical and ultimately widespread implementation, on-chip devices compatible with electronic integrated circuit technology offer great advantages in terms of low cost, small footprint, high performance and low energy consumption. While many on-chip key components have been realized, to date polarization has not been fully exploited as a degree of freedom for integrated nonlinear devices.
View Article and Find Full Text PDFTerahertz technologies recently emerged as outstanding candidates for a variety of applications in such sectors as security, biomedical, pharmaceutical, aero spatial, etc. Imaging the terahertz field, however, still remains a challenge, particularly when sub-wavelength resolutions are involved. Here we demonstrate an all-optical technique for the terahertz near-field imaging directly at the source plane.
View Article and Find Full Text PDFWe report an integrated all-optical radio frequency spectrum analyzer based on a ~4 cm long doped silica glass waveguide, with a bandwidth greater than 2.5 THz. We use this device to characterize the intensity power spectrum of ultrahigh repetition rate mode-locked lasers at repetition rates up to 400 GHz, and observe dynamic noise related behavior not observable with other techniques.
View Article and Find Full Text PDFWe demonstrate, theoretically and experimentally, that a four-wave mixing parametric interaction is able to arrest the collapse of a two-dimensional multicolor beam in an instantaneous Kerr medium. We consider two weak idlers interacting via a third order nonlinearity with two pump beams and we show that a class of collapse-free quasisolitary solutions can be experimentally observed in a normal dispersion Kerr glass. This observation is sustained by rigorous theoretical analysis demonstrating the stability of the observed self-trapped beams.
View Article and Find Full Text PDFWe report an integrated photon pair source based on a CMOS-compatible microring resonator that generates multiple, simultaneous, and independent photon pairs at different wavelengths in a frequency comb compatible with fiber communication wavelength division multiplexing channels (200 GHz channel separation) and with a linewidth that is compatible with quantum memories (110 MHz). It operates in a self-locked pump configuration, avoiding the need for active stabilization, making it extremely robust even at very low power levels.
View Article and Find Full Text PDFWe report a novel geometry for OPOs based on nonlinear microcavity resonators. This approach relies on a self-locked scheme that enables OPO emission without the need for thermal locking of the pump laser to the microcavity resonance. By exploiting a CMOS-compatible microring resonator, we achieve oscillation featured by a complete absence of "shutting down", i.
View Article and Find Full Text PDFWe present an extraction algorithm for spectral phase interferometry for direct field reconstruction (SPIDER) in the so-called X-SPIDER configuration. Our approach largely extends the measurable time windows of pulses without requiring any modification to the experimental X-SPIDER setup.
View Article and Find Full Text PDFWe demonstrate a novel mode locked ultrafast laser, based on an integrated high-Q microring resonator. Our scheme exhibits stable operation of two slightly shifted spectral optical comb replicas. It generates a highly monochromatic radiofrequency modulation of 65.
View Article and Find Full Text PDFWe demonstrate sub-picosecond wavelength conversion in the C-band via four wave mixing in a 45cm long high index doped silica spiral waveguide. We achieve an on/off conversion efficiency (signal to idler) of + 16.5dB as well as a parametric gain of + 15dB for a peak pump power of 38W over a wavelength range of 100nm.
View Article and Find Full Text PDFWe present the first system penalty measurements for all-optical wavelength conversion in an integrated ring resonator. We achieve wavelength conversion over a range of 27.7 nm in the C-band at 2.
View Article and Find Full Text PDF