Publications by authors named "Alessia Melani"

Cerebral ischemia is a multifactorial pathology characterized by different events evolving in time. The acute injury, characterized by excitoxicity, is followed by a secondary brain injury that develops from hours to days after ischemia. Extracellular levels of histamine increase in the ischemic area after focal cerebral ischemia induced by occlusion of the middle cerebral artery (MCAo).

View Article and Find Full Text PDF

We investigated the quantitative and morphofunctional alterations of neuron-astrocyte-microglia triads in CA3 hippocampus, in comparison to CA1, after 2 Vessel Occlusion (2VO) and the protective effect of dipyridamole. We evaluated 3 experimental groups: sham-operated rats (sham, n=15), 2VO-operated rats treated with vehicle (2VO-vehicle, n=15), and 2VO-operated rats treated with dipyridamole from day 0 to day 7 (2VO-dipyridamole, n=15), 90days after 2VO. We analyzed Stratum Pyramidalis (SP), Stratum Lucidum (SL) and Stratum Radiatum (SR) of CA3.

View Article and Find Full Text PDF

Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia a primary damage due to the early massive increase of extracellular glutamate is followed by activation of resident immune cells, i.e microglia, and production or activation of inflammation mediators.

View Article and Find Full Text PDF

Differentiation and maturation of oligodendroglial cells are postnatal processes that involve specific morphological changes correlated with the expression of stage-specific surface antigens and functional voltage-gated ion channels. A small fraction of oligodendrocyte progenitor cells (OPCs) generated during development are maintained in an immature and slowly proliferative or quiescent state in the adult central nervous system (CNS) representing an endogenous reservoir of immature cells. Adenosine receptors are expressed by OPCs and a key role of adenosine in oligodendrocyte maturation has been recently recognized.

View Article and Find Full Text PDF

Evidence indicates that the adenosine A2A receptor subtype is of critical importance in stroke. In previous studies, in the model of permanent middle cerebral artery occlusion (pMCAo), the adenosine A2A receptor antagonist, SCH58261, administered soon after ischemia, proved protective against excessive glutamate outflow in the first 4 h after ischemia and against neurological deficit and tissue damage evaluated 24 h after pMCAo. In the present work, we investigated if neuroprotective effect of SCH58261 was maintained 7 days after transient MCAo (tMCAo).

View Article and Find Full Text PDF

Purinergic P2X and P2Y receptors are broadly expressed on both neurons and glial cells in the central nervous system (CNS), including dentate gyrus (DG). The aim of this research was to determine the synaptic and proliferative response of the DG to severe oxygen and glucose deprivation (OGD) in acute rat hippocampal slices and to investigate the contribution of P2X7 and P2Y1 receptor antagonism to recovery of synaptic activity after OGD. Extracellular field excitatory post-synaptic potentials (fEPSPs) in granule cells of the DG were recorded from rat hippocampal slices.

View Article and Find Full Text PDF

Chronic cerebral hypoperfusion during aging may cause progressive neurodegeneration as ischemic conditions persist. Proper functioning of the interplay between neurons and glia is fundamental for the functional organization of the brain. The aim of our research was to study the pathophysiological mechanisms, and particularly the derangement of the interplay between neurons and astrocytes-microglia with the formation of "triads," in a model of chronic cerebral hypoperfusion induced by the two-vessel occlusion (2VO) in adult Wistar rats (n = 15).

View Article and Find Full Text PDF

Ischemic stroke is a complex pathology characterized by a sequence of events that evolve over time and space. It is the second leading cause of death and the main cause of adult long-term disability in developed countries. At the moment, there is no promising pharmacotherapy for acute ischemic stroke.

View Article and Find Full Text PDF

The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A(2A) receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A(2A) receptor emerged as a potential therapeutic attractive target in ischemia.

View Article and Find Full Text PDF

Evidence indicate that adenosine A2A receptor subtype is of critical importance in stroke. An overexpression of A2A adenosine receptors occurs at central level on neurons and microglia of ischemic striatum and cortex after focal ischemia. Adenosine A2A receptor subtype is localized not only at central level but also peripherally on blood cells, where it is known to exert antiinflammatory effect.

View Article and Find Full Text PDF

Evidences in the central nervous system are in favor that adenosine under basal conditions is released by a direct excitation-secretion modality. However, till now, there is no direct evidence that adenosine is contained in synaptic vesicles. Eight synaptic vesicle fractions were recovered on a discontinuous sucrose gradient after ultracentrifugation of the crude synaptosomal fraction (pellet P2) of rat brain.

View Article and Find Full Text PDF

In the central nervous system (CNS) ATP and adenosine act as transmitters and neuromodulators on their own receptors but it is still unknown which part of extracellular adenosine derives per se from cells and which part is formed from the hydrolysis of released ATP. In this study extracellular concentrations of adenosine and ATP from the rat striatum were estimated by the microdialysis technique under in vivo physiological conditions and after focal ischemia induced by medial cerebral artery occlusion. Under physiological conditions, adenosine and ATP concentrations were in the range of 130 nmol/L and 40 nmol/L, respectively.

View Article and Find Full Text PDF

Objective: The aim of our study was to investigate the effect of an adenosine A2A receptor agonist, 2-[p-(2-carboxyethyl)phenylethylamino]-50 ethylcarboxamidoadenosine (CGS 21680), on modulation of the inflammatory response in mice subjected to collagen-induced arthritis (CIA).

Methods: CIA was induced by intradermal injection of 100 μl of emulsion containing 100 μg of bovine type II collagen (CII) and complete Freund's adjuvant (CFA) at the base of the tail. On Day 21, a second injection of CII in CFA was administered.

View Article and Find Full Text PDF

Adenosine A(2A) receptor agonists may be important regulators of inflammation. The aim of this study was to investigate the effects of CGS 21680 (0.1mg/kgi.

View Article and Find Full Text PDF

Background: Permanent functional deficits following spinal cord injury (SCI) arise both from mechanical injury and from secondary tissue reactions involving inflammation. Enhanced release of adenosine and glutamate soon after SCI represents a component in the sequelae that may be responsible for resulting functional deficits. The role of adenosine A2A receptor in central ischemia/trauma is still to be elucidated.

View Article and Find Full Text PDF

Pharmacological therapy able to improve the cognitive performances of patients with chronic vascular pathologies currently remains unavailable. Many studies of chronic cerebral hypotension in rodents have revealed alterations in reference memory and learning. Dipyridamole was introduced into clinical medicine in the early 1960s as a coronary vasodilator.

View Article and Find Full Text PDF

In the present study, we tested the efficacy of treatment with the selective adenosine A2A receptor agonist 2-[p-(2-carboxyethyl)phenylethylamino]-50-ethylcarboxamidoadenosine (CGS 21680) on ischemia and reperfusion injury of the multivisceral organs. Ischemia and reperfusion injury was induced in mice by clamping both the superior mesenteric artery and the celiac artery for 30 min, followed thereafter by reperfusion. Sixty minutes after reperfusion, animals were killed for histological examination and biochemical studies.

View Article and Find Full Text PDF

Adenosine is a potent biological mediator, the concentration of which increases dramatically following brain ischaemia. During ischaemia, adenosine is in a concentration range (muM) that stimulates all four adenosine receptor subtypes (A(1), A(2A), A(2B) and A(3)). In recent years, evidence has indicated that the A(2A) receptor subtype is of critical importance in stroke.

View Article and Find Full Text PDF

Permanent functional deficit after spinal cord injury (SCI) arises from both mechanical injury and from secondary tissue reactions involving inflammation. Adenosine is an important regulator of inflammatory mechanisms. Although functional studies indicate a protective effect of adenosine A2A receptor agonists in SCI, the basic molecular mechanisms accounting for the their protective effects from SCI have to be fully elucidated.

View Article and Find Full Text PDF

This review summarizes recent developments that have contributed to understand how adenosine receptors, particularly A2A receptors, modulate brain injury in various animal models of neurological disorders, including Parkinson's disease (PD), stroke, Huntington's disease (HD), multiple sclerosis, Alzheimer's disease (AD) and HIV-associated dementia. It is clear that extracellular adenosine acting at adenosine receptors influences the functional outcome in a broad spectrum of brain injuries, indicating that A2A Rs may modulate some general cellular processes to affect neuronal cells death. Pharmacological, neurochemical and molecular/genetic approaches to the complex actions of A2A receptors in different cellular elements suggest that A2A receptor activation can be detrimental or protective after brain insults, depending on the nature of brain injury and associated pathological conditions.

View Article and Find Full Text PDF

Ischemia, through modulation of adenosine receptors (ARs), may influence adenosine-mediated-cellular responses. In the present study, we investigated the modulation of rat A(2A) receptor expression and functioning, in rat cerebral cortex and striatum, following in vivo focal ischemia (24 h). In cortex, middle cerebral artery occlusion did not induce any alterations in A(2A) receptor binding and functioning.

View Article and Find Full Text PDF

Bone marrow-derived human mesenchymal stem cells (hMSCs) have the potential to differentiate into several cell lines. Extracellular adenosine 5'-triphosphate (ATP) acts as a potent signaling molecule mediating cell-to-cell communication. Particular interest has been focused in recent years on the role of ATP in stem cell proliferation and differentiation.

View Article and Find Full Text PDF

Adenosine and dopamine are two important modulators of glutamatergic neurotransmission in the striatum. However, conflicting reports exist about the role of adenosine and adenosine receptors in the modulation of striatal dopamine release. It has been previously suggested that adenosine A(1) receptors localized in glutamatergic nerve terminals indirectly modulate dopamine release, by their ability to modulate glutamate release.

View Article and Find Full Text PDF

Adenosine 5'-triphosphate outflow increases after an ischemic insult in the brain and may induce the expression of P2X7 receptors in resting microglia, determining its modification into an activated state. To assess the effects of P2X7 receptor blockade in preventing microglia activation and ameliorating brain damage and neurological impairment, we delivered the P2 unselective antagonist Reactive Blue 2 to rats after middle cerebral artery occlusion. In sham-operated animals, devoid of brain damage, double immunofluorescence verified the absence of P2X7 immunoreactivity on resting microglia, astrocytes, and neurons, identified, respectively, by OX-42, glial fibrillary acid protein, and neuronal nuclei (NeuN) immunoreactivity.

View Article and Find Full Text PDF