Publications by authors named "Alessia Mastrodonato"

Article Synopsis
  • Previous research has shown that both (R,S)-ketamine and its metabolite (2S,6S)-HNK can reduce learned fear in mice when administered before experiencing stress.
  • A study involved injecting mice with these compounds and then assessing neural activity related to fear after a fear conditioning task.
  • The findings suggest that both drugs affect different neural pathways associated with fear and could lead to new methods for treating fear-related disorders by targeting specific brain areas.
View Article and Find Full Text PDF

(,)-ketamine is an -methyl-D-aspartate (NMDA) receptor antagonist that was originally developed as an anesthetic. Most recently, (,)-ketamine has been used as a rapid-acting antidepressant, and we have reported that (,)-ketamine can also be a prophylactic against stress in adult mice. However, most pre-clinical studies have been performed in adult mice.

View Article and Find Full Text PDF

Background: (R,S)-ketamine, an N-methyl-D-aspartate receptor antagonist, is frequently used as an anesthetic and as a rapid-acting antidepressant. We and others have reported that (R,S)-ketamine is prophylactic against stress in adult mice but have yet to test its efficacy in adolescent or aged populations.

Methods: Here, we administered saline or (R,S)-ketamine as a prophylactic at varying doses to adolescent (5-week-old) and aged (24-month-old) 129S6/SvEv mice of both sexes 1 week before a 3-shock contextual fear-conditioning (CFC) stressor.

View Article and Find Full Text PDF

Background: Major depressive disorder is a common, recurrent illness. Recent studies have implicated the NMDA receptor in the pathophysiology of major depressive disorder. (R,S)-ketamine, an NMDA receptor antagonist, is an effective antidepressant but has numerous side effects.

View Article and Find Full Text PDF

Background: Posttraumatic stress disorder can develop after a traumatic event and results in heightened, inappropriate fear and anxiety. Although approximately 8% of the U.S.

View Article and Find Full Text PDF

In the United States, ~1.4 million individuals identify as transgender. Many transgender adolescents experience gender dysphoria related to incongruence between their gender identity and sex assigned at birth.

View Article and Find Full Text PDF

Early diagnosis of Alzheimer's disease (AD) supposedly increases the effectiveness of therapeutic interventions. However, presently available diagnostic procedures are either invasive or require complex and expensive technologies, which cannot be applied at a larger scale to screen populations at risk of AD. We were looking for a biomarker allowing to unveil a dysfunction of molecular mechanisms, which underly synaptic plasticity and memory, before the AD phenotype is manifested and investigated the effects of transcranial direct current stimulation (tDCS) in 3×Tg-AD mice, an experimental model of AD which does not exhibit any long-term potentiation (LTP) and memory deficits at the age of 3 months (3×Tg-AD-3M).

View Article and Find Full Text PDF

Metabolic diseases harm brain health and cognitive functions, but whether maternal metabolic unbalance may affect brain plasticity of next generations is still unclear. Here, we demonstrate that maternal high fat diet (HFD)-dependent insulin resistance multigenerationally impairs synaptic plasticity, learning and memory. HFD downregulates BDNF and insulin signaling in maternal tissues and epigenetically inhibits BDNF expression in both germline and hippocampus of progeny.

View Article and Find Full Text PDF

Individuals with peripheral inflammation are a particularly vulnerable population for developing depression and are also more resistant towards traditional antidepressants. This signals the need for novel drugs that can effectively treat this patient population. Recently, we have demonstrated that (R,S)-ketamine is a prophylactic against a variety of stressors, but have yet to test if it is protective against inflammatory-induced vulnerability to a stressor.

View Article and Find Full Text PDF

Young adult-born granule cells (abGCs) in the dentate gyrus (DG) have a profound impact on cognition and mood. However, it remains unclear how abGCs distinctively contribute to local DG information processing. We found that the actions of abGCs in the DG depend on the origin of incoming afferents.

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) is a DNA neurotropic virus, usually establishing latent infections in the trigeminal ganglia followed by periodic reactivations. Although numerous findings suggested potential links between HSV-1 and Alzheimer's disease (AD), a causal relation has not been demonstrated yet. Hence, we set up a model of recurrent HSV-1 infection in mice undergoing repeated cycles of viral reactivation.

View Article and Find Full Text PDF

Background: We previously reported that a single injection of ketamine prior to stress protects against the onset of depressive-like behavior and attenuates learned fear. However, the molecular pathways and brain circuits underlying ketamine-induced stress resilience are still largely unknown.

Methods: Here, we tested whether prophylactic ketamine administration altered neural activity in the prefrontal cortex and/or hippocampus.

View Article and Find Full Text PDF

Recently, we have shown that ketamine given prior to stress exposure protects against the development of depressive-like behavior in mice. These data suggest that it may be possible to prevent the induction of affective disorders before they develop by administering prophylactic pharmaceuticals, a relatively nascent and unexplored strategy for psychiatry. Here, we performed metabolomics analysis of brain and plasma following prophylactic ketamine treatment in order to identify markers of stress resilience enhancement.

View Article and Find Full Text PDF

Exposure to extremely low-frequency electromagnetic fields (ELFEF) influences the expression of key target genes controlling adult neurogenesis and modulates hippocampus-dependent memory. Here, we assayed whether ELFEF stimulation affects olfactory memory by modulating neurogenesis in the subventricular zone (SVZ) of the lateral ventricle, and investigated the underlying molecular mechanisms. We found that 30 days after the completion of an ELFEF stimulation protocol (1 mT; 50 Hz; 3.

View Article and Find Full Text PDF

The effects of transcranial direct current stimulation (tDCS) on brain functions and the underlying molecular mechanisms are yet largely unknown. Here we report that mice subjected to 20-min anodal tDCS exhibited one-week lasting increases in hippocampal LTP, learning and memory. These effects were associated with enhanced: i) acetylation of brain-derived neurotrophic factor (Bdnf) promoter I; ii) expression of Bdnf exons I and IX; iii) Bdnf protein levels.

View Article and Find Full Text PDF

Intracellular accumulation of amyloid-β (Aβ) protein has been proposed as an early event in AD pathogenesis. In patients with mild cognitive impairment, intraneuronal Aβ immunoreactivity was found especially in brain regions critically involved in the cognitive deficits of AD. Although a large body of evidence demonstrates that Aβ42 accumulates intraneuronally ((in)Aβ), the action and the role of Aβ42 buildup on synaptic function have been poorly investigated.

View Article and Find Full Text PDF

Throughout life, adult neurogenesis generates new neurons in the dentate gyrus of hippocampus that have a critical role in memory formation. Strategies able to stimulate this endogenous process have raised considerable interest because of their potential use to treat neurological disorders entailing cognitive impairment. We previously reported that mice exposed to extremely low-frequency electromagnetic fields (ELFEFs) showed increased hippocampal neurogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how changes in brain chemicals, like histone acetylation, help mice remember scary things after a training task.
  • They found that using a special chemical (SAHA) made the mice remember better, while another chemical (5-AZA) made it harder for them to remember.
  • The research suggests that changing these chemicals in the brain is important for storing memories and that different parts of the brain may work together for this.
View Article and Find Full Text PDF

In recent years, much effort has been devoted to identifying stimuli capable of enhancing adult neurogenesis, a process that generates new neurons throughout life, and that appears to be dysfunctional in the senescent brain and in several neuropsychiatric and neurodegenerative diseases. We previously reported that in vivo exposure to extremely low-frequency electromagnetic fields (ELFEFs) promotes the proliferation and neuronal differentiation of hippocampal neural stem cells (NSCs) that functionally integrate in the dentate gyrus. Here, we extended our studies to specifically assess the influence of ELFEFs on hippocampal newborn cell survival, which is a very critical issue in adult neurogenesis regulation.

View Article and Find Full Text PDF

Neural stem cells generate neurons in the hippocampal dentate gyrus in mammals, including humans, throughout adulthood. Adult hippocampal neurogenesis has been the focus of many studies due to its relevance in processes such as learning and memory and its documented impairment in some neurodegenerative diseases. However, we are still far from having a complete picture of the mechanism regulating this process.

View Article and Find Full Text PDF

Cocaine seeking behaviour and relapse have been linked to impaired potentiation and depression at excitatory synapses in the nucleus accumbens, but the mechanism underlying this process is poorly understood. We show that, in the rat nucleus accumbens core, D-serine is the endogenous coagonist of N-methyl-D-aspartate receptors, and its presence is essential for N-methyl-D-aspartate receptor-dependent potentiation and depression of synaptic transmission. Nucleus accumbens core slices obtained from cocaine-treated rats after 1 day of abstinence presented significantly reduced D-serine concentrations, increased expression of the D-serine degrading enzyme, D-amino acid oxidase, and downregulated expression of serine racemase, the enzyme responsible for D-serine synthesis.

View Article and Find Full Text PDF