The transamidating activity of tissue transglutaminase is regulated by the ligands calcium and GTP, via conformational changes which facilitate or interfere with interaction with the peptidyl-glutamine substrate. We have analysed binding of these ligands by calorimetric and computational approaches. In the case of GTP we have detected a single high affinity site (K (D) approximately 1 microM), with moderate thermal effects suggestive that binding GTP involves replacement of GDP, normally bound to the protein.
View Article and Find Full Text PDFThe considerable affinity of tissue transglutaminase for heparin was the basis for use of heparin-based affinity matrices for enzyme purification. Interaction of transglutaminase with heparin might mimic the physiological binding to membrane heparan sulfates, accounting for the limited but significant fraction of enzyme exposed at cell surface to crosslink ECM proteins. Exploring effects of heparin on transglutaminase activity and stability, we have noted that heparin only slightly affects activity in vitro, but the protein against heat treatment and proteolysis.
View Article and Find Full Text PDFThe diatomic molecule of oxygen contains two uncoupled electrons and can therefore undergo reduction, yielding several different oxygen metabolites, which are collectively called Reactive Oxygen Species or ROS. They are invariably produced in aerobic environments through a variety of mechanisms, which include electron "leakage" during biologic oxidations, action of flavin dehydrogenases and specific membrane associated secretion, as well as by physical activation of oxygen by irradiation, e.g.
View Article and Find Full Text PDF