Rationale: A cell-based biological pacemaker is based on the differentiation of stem cells and the selection of a population displaying the molecular and functional properties of native sinoatrial node (SAN) cardiomyocytes. So far, such selection has been hampered by the lack of proper markers. CD166 is specifically but transiently expressed in the mouse heart tube and sinus venosus, the prospective SAN.
View Article and Find Full Text PDFThe efficacy of cardiac repair by stem cell administration relies on a successful functional integration of injected cells into the host myocardium. Safety concerns have been raised about the possibility that stem cells may induce foci of arrhythmia in the ischemic myocardium. In a previous work (36), we showed that human cord blood CD34(+) cells, when cocultured on neonatal mouse cardiomyocytes, exhibit excitation-contraction coupling features similar to those of cardiomyocytes, even though no human genes were upregulated.
View Article and Find Full Text PDFCardiac mesoangioblasts (MABs) are a class of vessel-associated clonogenic, self-renewing progenitor cells, recently identified in the post-natal murine heart and committed to cardiac differentiation. Cardiomyocytes generated during cardiogenesis from progenitor cells acquire several distinct phenotypes, corresponding to different functional properties in diverse structures of the adult heart. Given the special functional relevance to rhythm generation and rate control of sinoatrial cells, and in view of their prospective use in therapeutical applications, we sought to determine if, and to what extent, cardiac mesoangioblasts could also differentiate into myocytes with properties typical of mature pacemaker myocytes.
View Article and Find Full Text PDFMouse embryonic stem cells (mESCs) differentiate into all cardiac phenotypes, and thus represent an important potential source for cardiac regenerative therapies. Here we characterize the molecular composition and functional properties of "funny" (f-) channels in mESC-derived pacemaker cells. Following differentiation, a fraction of mESC-derived myocytes exhibited action potentials characterized by a slow diastolic depolarization and expressed the I(f) current.
View Article and Find Full Text PDF