Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of upper and lower motor neurons. To study its underlying mechanisms, a variety of models are currently used at the cellular level and in animals with mutations in multiple ALS associated genes, including SOD1, C9ORF72, TDP-43, and FUS. Key mechanisms involved in the disease include excitotoxicity, oxidative stress, mitochondrial dysfunction, neuroinflammatory, and immune reactions.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disease incurable due to late diagnosis and treatment. Therefore, one of the priorities of neurology is to study the mechanisms of PD pathogenesis at the preclinical and early clinical stages. Given the important role of sphingolipids in the pathogenesis of neurodegenerative diseases, we aimed to analyze the gene expression of key sphingolipid metabolism enzymes (ASAH1, ASAH2, CERS1, CERS3, CERS5, GBA1, SMPD1, SMPD2, UGCG) and the content of 32 sphingolipids (subspecies of ceramides, sphingomyelins, monohexosylceramides and sphinganine, sphingosine, and sphingosine-1-phosphate) in the nigrostriatal system in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse models of the preclinical and clinical stages of PD.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
September 2021
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by selective degeneration of motor neurons of the spinal cord and motor cortex and brain stem. The key features of the course of this disease are excitotoxicity, oxidative stress, mitochondrial dysfunction, neuro-inflammatory and immune reactions. Recently, the mechanisms of programmed cell death (apoptosis), which may be responsible for the degeneration of motor neurons in this disease, have been intensively studied.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
November 2020
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by selective degeneration of motor neurons of the motor cortex, brain stem and brain stem. Mutations in genes coding for SOD1, C9ORF72, TDP-43, FUS and others are associated with ALS and result in abnormal processing and transport of RNA as well as changes in the dynamics of cytoskeleton. In addition, a sharp change in the metabolism of various lipid classes, including phospholipids, fatty acids, sphingolipids, etc.
View Article and Find Full Text PDFInt J Mol Sci
November 2020
Glucan linked to proteins is a natural mega-glycoconjugate (mGC) playing the central role as a structural component of a yeast cell wall (CW). Regulation of functioning of non-covalently bound glucanosyltransglycosylases (ncGTGs) that have to remodel mGC to provide CW extension is poorly understood. We demonstrate that the main ncGTGs Bgl2 and Scw4 have phosphorylated and glutathionylated residues and are represented in CW as different pools of molecules having various firmness of attachment.
View Article and Find Full Text PDFOver the past decade, it was found that relatively simple sphingolipids, such as ceramide, sphingosine, sphingosine-1-phosphate, and glucosylceramide play important roles in neuronal functions by regulating rates of neuronal growth and differentiation. Homeostasis of membrane sphingolipids in neurons and myelin is essential to prevent the loss of synaptic plasticity, cell death and neurodegeneration. In our review we summarize data about significant brain cell alterations of sphingolipids in different neurodegenerative diseases such as Alzheimer's disease, Parkinson disease, Amyotrophic Lateral Sclerosis, Gaucher's, Farber's diseases, etc.
View Article and Find Full Text PDFThe aim of this study was to evaluate changes in the content of sphingoid bases - sphingosine (SPH), sphinganine, and sphingosine-1-phosphate (SPH-1-P) - and in expression of genes encoding enzymes involved in their metabolism in the brain structures (hippocampus, cortex, and cerebellum) and spinal cord of transgenic FUS(1-359) mice. FUS(1-359) mice are characterized by motor impairments and can be used as a model of amyotrophic lateral sclerosis (ALS). Lipids from the mouse brain structures and spinal cord after 2, 3, and 4 months of disease development were analyzed by chromatography/mass spectrometry, while changes in the expression of the SPHK1, SPHK2, SGPP2, SGPL1, ASAH1, and ASAH2 genes were assayed using RNA sequencing.
View Article and Find Full Text PDFLipid metabolism disorders are the most significant risk factor of development of cardiovascular diseases (CVD). In the process of diagnosing ischemic heart disease and other cardiovascular pathologies, levels of total cholesterol, low- and high- density lipoprotein cholesterol, triglycerides are determined. However, in recent years, close attention has been paid to the intersection of the metabolic pathways of the biosynthesis of cholesterol and sphingolipids.
View Article and Find Full Text PDFCardiovascular diseases (CVD) remain the leading cause of death in industrialized countries. One of the most significant risk factors for atherosclerosis is hypercholesterolemia. Its diagnostics is based on routine lipid profile analysis, including the determination of total cholesterol, low and high density lipoprotein cholesterol, and triglycerides.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
March 2019
Aim: To investigate the ability of the neuroprotector dimebon to prevent alterations in brain lipid metabolism caused byTNF-α.
Material And Methods: The ability of dimebon (2,8-Dimethyl-5-[2-(6-methyl-3-pyridinyl)ethyl]-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole hydrochloride) to prevent alterations in brain lipid metabolism caused byTNF-α was studied in 65 male mice (20+2g weight). TNF-α (10 mkg/mouse), dimebon (0.
Mediators Inflamm
September 2018
This review provides an overview on components of the sphingolipid superfamily, on their localization and metabolism. Information about the sphingolipid biological activity in cell physiopathology is given. Recent studies highlight the role of sphingolipids in inflammatory process.
View Article and Find Full Text PDFDimebon (Dimebolin) is an antihistamine drug which has been used in Russia since 1983. Recently Dimebolin has attracted renewed interest after being shown to have positive effects on persons suffering from Alzheimer's disease. Animal studies have shown that dimebon acts through multiple mechanisms, both blocking the action of neurotoxic beta-amyloid peptides and inhibiting L-type calcium channels, modulating the action of AMPA and NMDA glutamate receptors.
View Article and Find Full Text PDFThis review discusses the functional role of nitric oxide in ischemia-reperfusion injury and mechanisms of signal transduction of apoptosis, which accompanies ischemic damage to organs and tissues. On induction of apoptosis an interaction is observed of the nitric oxide signaling system with the sphingomyelin cycle, which is a source of a proapoptotic agent ceramide. Evidence is presented of an interaction of the sphingomyelin cycle enzymes and ceramide with nitric oxide and enzymes synthesizing nitric oxide.
View Article and Find Full Text PDFRestoration of bile flow after 9-day cholestasis in rat liver normalized the content of lipid peroxidation products. The removal of the cholestatic factor after 12-day cholestasis was not followed by recovery of these parameters. We showed that measurement of serum concentration of lipid peroxidation products in patients with cholelithiasis during the preoperative period holds promise for selection of the optimum time for surgical treatment and prediction of the risk of postoperative complications.
View Article and Find Full Text PDFWe used animal models to study connection between oxidating system and sphingomyelin signaling cascade, because this models are more close related to people disease. Activation of n-sphingomyelinase (n-SMase) in mice liver and brain is coincided in time with increased level of peroxide products (conjugated dienes) after injection of tumor necrosis factor alpha (TNF-alpha). We found that ceramide can induce peroxide oxidation and lead to accumulation of TNF-alpha in animal organs.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by progressive decline in cognition, memory and intellect. It has been hypothesized that amyloid-beta peptide (A-beta) may have a prominent role in neurodegeneration. Oxidative mechanisms have been implicated in this pathway.
View Article and Find Full Text PDFBiochemistry (Mosc)
May 2003
Synthesis of lipids was studied in isolated nuclei from rat thymus and liver cells. On incubation of the isolated nuclei with [2-14C]acetate and [1-14C]glycerol, the label was intensively incorporated into phospholipids and with a significantly lower intensity into fatty acids and cholesterol. Only trace amounts of radioactivity were detected in the lipids of chromatin prepared from isolated thymus nuclei after their incubation, and this suggested that lipids were mainly synthesized on the nuclear membrane.
View Article and Find Full Text PDFThe signal transduction pathways triggering apoptotic mechanisms after ischemia/reperfusion may involve TNF-alpha secretion, ceramide generation, and initiation of lipid peroxidation. In the present study involvement of the TNF-alpha, sphingomyelin cycle, and lipid peroxidation in the initiation of apoptosis induced in liver cells by ischemia and reperfusion was investigated. Wistar rats were subjected to total liver ischemia (for 15, 30 min, and 1 h) followed by subsequent reperfusion.
View Article and Find Full Text PDFThis review presents the structural and functional role of phospholipids in chromatin and nuclear matrix as well as the difference in composition and turnover compared to those present in the nuclear membrane. Nuclei have a very active lipid metabolism which seems to play an important role in the transduction of the signals to the genome in response to agonists acting at the plasma membrane level. The evidence on the presence of phospholipid-calcium-dependent protein kinase C (PKC) in nuclei and enzymes of phospholipids turnover is given.
View Article and Find Full Text PDFLike the phosphatidyl inositol cycle, the sphingomyelin cycle produces a series of the secondary messengers transmitting extracellular signals from the cytoplasmic membrane into the nucleus. Sphingomyelin, ceramide, sphingosine, sphingomyelinase, and ceramidase are the main components of the sphingomyelin cycle. In spite of numerous data on the functional properties of sphingomyelin cycle products, the activation mechanism for the key enzyme of the sphingomyelin cycle, sphingomyelinase (SMase), is not well understood.
View Article and Find Full Text PDFThe effect of bilirubin (BR) on sphingomyelin cycle activity, lipid peroxidation (LPO), and apoptosis induced by sphingosine and UV irradiation has been studied in vivo. Neutral Mg(2+)-dependent sphingomyelinase (SMase) activity and LPO level were monitored in heart, kidney, and liver of mice after administration of BR. BR inhibited both LPO and SMase activities in heart and kidney.
View Article and Find Full Text PDFContents of sphingolipids (ceramide, sphingomyelin, gangliosides) and the composition of their sphingoid bases were studied in the transplantable rat nephroma-RA and in rat kidneys. The content of sphingomyelin was about 1.3-fold decreased and the content of ceramide was about 1.
View Article and Find Full Text PDF