Publications by authors named "Alessandro W Amici"

Recent evidence supports and reinforces the concept that environmental cues may reprogramme somatic cells and change their natural fate. In the present review, we concentrate on environmental reprogramming and fate potency of different epithelial cells. These include stratified epithelia, such as the epidermis, hair follicle, cornea and oesophagus, as well as the thymic epithelium, which stands alone among simple and stratified epithelia, and has been shown recently to contain stem cells.

View Article and Find Full Text PDF

The thymus develops from the third pharyngeal pouch of the anterior gut and provides the necessary environment for thymopoiesis (the process by which thymocytes differentiate into mature T lymphocytes) and the establishment and maintenance of self-tolerance. It contains thymic epithelial cells (TECs) that form a complex three-dimensional network organized in cortical and medullary compartments, the organization of which is notably different from simple or stratified epithelia. TECs have an essential role in the generation of self-tolerant thymocytes through expression of the autoimmune regulator Aire, but the mechanisms involved in the specification and maintenance of TECs remain unclear.

View Article and Find Full Text PDF

Several studies focused on the characterization of bulge keratinocytes have proved that they are multipotent stem cells, being recruited not only to regenerate the hair follicle itself, but also the sebaceous gland and the epidermis. However, due to the difficulty in preparing transplantable cell sheets harvested with conventional enzymatic digestion, there is still no direct evidence of the bulge stem cells' multipotency. Whether they can respond to adult dermal papilla (DP) signals in recombination experiments also remains unclear.

View Article and Find Full Text PDF