Publications by authors named "Alessandro Tredicucci"

Article Synopsis
  • Researchers developed a platform that allows multiple mechanical resonators to be individually controlled using a single electrical channel, simplifying connections.
  • They demonstrated the ability to control the resonators' vibrations at room temperature and take specific measurements of each device.
  • This platform is useful for various applications, including far-infrared cameras and recurrent neural networks, because it enables efficient communication with multiple devices at once.
View Article and Find Full Text PDF

We investigated the impact of ozone exposure on Hornbeam using a novel dual approach based on Terahertz (THz) imaging in a free-air ozone exposure experiment (three ozone levels: ambient; 1.5 times ambient; twice ambient). The research aims at unraveling the physiological responses induced by elevated ozone levels on water dynamics.

View Article and Find Full Text PDF

Optical control is achieved on the excited state energy transfer between spatially separated donor and acceptor molecules, both coupled to the same optical mode of a cavity. The energy transfer occurs through the formed hybrid polaritons and can be switched on and off by means of ultraviolet and visible light. The control mechanism relies on a photochromic component used as donor, whose absorption and emission properties can be varied reversibly through light irradiation, whereas in-cavity hybridization with acceptors through polariton states enables a 6-fold enhancement of acceptor/donor contribution to the emission intensity with respect to a reference multilayer.

View Article and Find Full Text PDF

In this work we investigate the power scaling of diode-pumped Pr:LiLuF waveguide lasers produced by direct femtosecond writing. The waveguides studied consisted in depressed cladding waveguides with different geometries. We observed laser emission at 604 nm, achieving a maximum output power of 275 mW and a slope efficiency of 40%, and 721 nm, demonstrating 310 mW of output power and a slope efficiency of 50%.

View Article and Find Full Text PDF

The development of new non-invasive approaches able to recognize defective food is currently a lively field of research. In particular, a simple and non-destructive method able to recognize defective hazelnuts, such as cimiciato-infected ones, in real-time is still missing. This study has been designed to detect the presence of such damaged hazelnuts.

View Article and Find Full Text PDF
Article Synopsis
  • * The laser successfully emitted light at three different wavelengths: 604 nm (86 mW), 721 nm (60 mW), and for the first time in praseodymium lasers, 698 nm (3 mW), with varying efficiencies.
  • * The waveguide's performance at 698 nm is notable for being stable, primarily operating in the fundamental mode, and having a Gaussian intensity profile, which is crucial for applications like atomic clocks.
View Article and Find Full Text PDF
Article Synopsis
  • * This study focuses on isotropically strained polycrystalline graphene, using atomistic simulations to relate Drude-Smith parameters to the material's microscopic behavior.
  • * The findings reveal that increased separation between single-crystal grains primarily drives strain-induced changes in conductivity, while at low strain, effects from deformation of individual grains are more prominent.
View Article and Find Full Text PDF
Article Synopsis
  • Growing demand for flexible photonics highlights the need for innovative manufacturing techniques on complex surfaces and at smaller sizes.* -
  • This study introduces a new method for creating conformable terahertz metasurfaces using polymeric nanomembranes and direct laser writing, resulting in ultra-thin plasmonic absorbers.* -
  • The discovery of flexible dielectric materials with low absorption in the THz range opens doors for ultra-thin, conformable devices that could expand THz technology applications and flexible photonics.*
View Article and Find Full Text PDF

Artificially-induced defects in the lattice of graphene are a powerful tool for engineering the properties of the crystal, especially if organized in highly-ordered structures such as periodic arrays. A method to deterministically induce defects in graphene is to irradiate the crystal with low-energy (<20 keV) electrons delivered by a scanning electron microscope. However, the nanometric precision granted by the focused beam can be hindered by the pattern irradiation itself due to the small lateral separation among the elements, which can prevent the generation of sharp features.

View Article and Find Full Text PDF

Fast room-temperature imaging at terahertz (THz) and subterahertz (sub-THz) frequencies is an interesting technique that could unleash the full potential of plenty of applications in security, healthcare, and industrial production. In this Letter, we introduce micromechanical bolometers based on silicon nitride trampoline membranes as broad-range detectors down to sub-THz frequencies. They show, at the longest wavelengths, room-temperature noise-equivalent powers comparable to those of state-of-the-art commercial devices (∼100 pW Hz), which, along with the good operation speed and the easy, large-scale fabrication process, could make the trampoline membrane the next candidate for cheap room-temperature THz imaging and related applications.

View Article and Find Full Text PDF

We demonstrate a graphene-MoS architecture integrating multiple field-effect transistors (FETs), and we independently probe and correlate the conducting properties of van der Waals coupled graphene-MoS contacts with those of the MoS channels. Devices are fabricated starting from high-quality single-crystal monolayers grown by chemical vapor deposition. The heterojunction was investigated by scanning Raman and photoluminescence spectroscopies.

View Article and Find Full Text PDF

Quantum cascade lasers (QCLs) represent a most promising compact source at terahertz (THz) frequencies, but efficiency of their continuous wave (CW) operation still needs to be improved to achieve large-scale exploitation. Here, we demonstrate highly efficient operation of a subwavelength microcavity laser consisting of two evanescently coupled whispering gallery microdisk resonators. Exploiting a dual injection scheme for the laser cavity, single mode CW vertical emission at 3.

View Article and Find Full Text PDF

Owing to their intrinsic stability against optical feedback (OF), quantum cascade lasers (QCLs) represent a uniquely versatile source to further improve self-mixing interferometry at mid-infrared and terahertz (THz) frequencies. Here, we show the feasibility of detecting with nanometer precision, the deeply subwavelength ($ \lt \lambda /6000 $<λ/6000) mechanical vibrations of a suspended $ {{\rm Si}_3}{{\rm N}_4} $SiN membrane used as the external element of a THz QCL feedback interferometer. Besides representing an extension of the applicability of vibrometric characterization at THz frequencies, our system can be exploited for the realization of optomechanical applications, such as dynamical switching between different OF regimes and a still-lacking THz master-slave configuration.

View Article and Find Full Text PDF

Water availability is a major limiting factor in plant productivity and plays a key role in plant species distribution over a given area. New technologies, such as terahertz quantum cascade lasers (THz-QCLs) have proven to be non-invasive, effective, and accurate tools for measuring and monitoring leaf water content. This study explores the feasibility of using an advanced THz-QCL device for measuring the absolute leaf water content in L.

View Article and Find Full Text PDF

Dicationic ionic liquids (DILs) are a subclass of the ionic liquid (IL) family and are characterized by two cationic head groups linked by means of a spacer. While DILs are increasingly attracting interest due to their peculiar physico-chemical properties, there is still a lack of understanding of their intermolecular interactions. Herein, we report our investigations on the intermolecular vibrational modes of two bromide DILs and of a bistriflimide DIL.

View Article and Find Full Text PDF

Resonators and the way they couple to external radiation rely on very different concepts if one considers devices belonging to the photonic and electronic worlds. The terahertz frequency range, however, provides intriguing possibilities for the development of hybrid technologies that merge ideas from both fields in novel functional designs. In this paper, we show that high-quality, subwavelength, whispering-gallery lasers can be combined to form a linear dipole antenna, which creates a very efficient, low-threshold laser emission in a collimated beam pattern.

View Article and Find Full Text PDF

The interplay between interference and absorption leads to interesting phenomena like coherent perfect absorption and coherent perfect transparency (CPA and CPT), which can be exploited for fully optical modulation. While it is known that it is possible to harness CPA and CPT for switching a strong signal beam with a weak control beam, it is not immediate that this process suffers from a fundamental compromise between the device efficiency (quantified by device loss and modulation depth) and the asymmetry between signal and control intensity desired for operation. This article quantifies this compromise and outlines a possible way to overcome it by means of a combination of optical gain and loss in the same photonic component.

View Article and Find Full Text PDF

In the present article we numerically investigated the magneto-optical behaviour of a sub-wavelength structure composed by a monolayer graphene and a metallic metasurface of optical resonators. Using this hybrid graphene-metal structure, a large increase of the non-reciprocal polarization rotation of graphene can be achieved over a broad range of terahertz frequencies. We demonstrate that the symmetry of the resonator geometry plays a key role for the performance of the system: in particular, increasing the symmetry of the resonator the non-reciprocal properties can be progressively enhanced.

View Article and Find Full Text PDF

Saturable absorbers (SA) operating at terahertz (THz) frequencies can open new frontiers in the development of passively mode-locked THz micro-sources. Here we report the fabrication of THz SAs by transfer coating and inkjet printing single and few-layer graphene films prepared by liquid phase exfoliation of graphite. Open-aperture z-scan measurements with a 3.

View Article and Find Full Text PDF

Background: Plant water resource management is one of the main future challenges to fight recent climatic changes. The knowledge of the plant water content could be indispensable for water saving strategies. Terahertz spectroscopic techniques are particularly promising as a non-invasive tool for measuring leaf water content, thanks to the high predominance of the water contribution to the total leaf absorption.

View Article and Find Full Text PDF

We demonstrate the use of a compound optical cavity as linear displacement detector, by measuring the thermal motion of a silicon nitride suspended membrane acting as the external mirror of a near-infrared Littrow laser diode. Fluctuations in the laser optical power induced by the membrane vibrations are collected by a photodiode integrated within the laser, and then measured with a spectrum analyzer. The dynamics of the membrane driven by a piezoelectric actuator is investigated as a function of air pressure and actuator displacement in a homodyne configuration.

View Article and Find Full Text PDF

We demonstrate localization and field-effect spatial control of the plasmon resonance in semiconductor nanostructures, using scattering-type scanning near-field optical microscopy in the mid-infrared region. We adopt InAs nanowires embedding a graded doping profile to modulate the free carrier density along the axial direction. Our near-field measurements have a spatial resolution of 20 nm and demonstrate the presence of a local resonant feature whose position can be controlled by a back-gate bias voltage.

View Article and Find Full Text PDF

We investigate the nonlinear transmission of a ~280-layer turbostratic graphene sheet for near-infrared amplifier laser pulses (775 nm, Ti:sapphire laser) with a duration of 150-fs and 20-fs. Saturable absorption is observed in both cases, however it is not very strong, amounting to ~13% transmittance change for the 20-fs (150-fs) pulses at a peak intensity of 30 GW/cm (4 GW/cm). The dependence on incident peak intensity is reproduced well using a theoretical model for the time-dependent saturable absorption, where the excited carriers vacate the photo-excited energy range within 3-5 fs, which we attribute to energy redistribution due to carrier-carrier scattering.

View Article and Find Full Text PDF