Dispersive Fourier transform is a characterization technique that allows directly extracting an optical spectrum from a time domain signal, thus providing access to real-time characterization of the signal spectrum. However, these techniques suffer from sensitivity and dynamic range limitations, hampering their use for special applications in, e.g.
View Article and Find Full Text PDFIn our experiments, we reveal a so-far unnoticed power limitation of beam self-cleaning in graded-index nonlinear multimode optical fibers. As the optical pulse power is progressively increased, we observed that the initial Kerr-induced improvement of the spatial beam quality is eventually lost. Based on a holographic mode decomposition of the output field, we show that beam spoiling is associated with high-temperature wave thermalization, which depletes the fundamental mode in favor of a highly multimode power distribution.
View Article and Find Full Text PDFWe report the experimental demonstration of efficient second-harmonic generation by splicing optically poled fiber segments. A device made from five segments each 20 cm-long exhibits, at a fundamental average power of 4.2 mW, a maximum increase of 5.
View Article and Find Full Text PDFBeam self-cleaning (BSC) in graded-index (GRIN) multimode fibers (MMFs) has been recently reported by different research groups. Driven by the interplay between Kerr effect and beam self-imaging, BSC counteracts random mode coupling, and forces laser beams to recover a quasi-single mode profile at the output of GRIN fibers. Here we show that the associated self-induced spatiotemporal reshaping allows for improving the performances of nonlinear fluorescence (NF) microscopy and endoscopy using multimode optical fibers.
View Article and Find Full Text PDFA low intensity light beam emerges from a graded-index, highly multimode optical fibre with a speckled shape, while at higher intensity the Kerr nonlinearity may induce a spontaneous spatial self-cleaning of the beam. Here, we reveal that we can generate two self-cleaned beams with a mutual coherence large enough to produce a clear stable fringe pattern at the output of a nonlinear interferometer. The two beams are pumped by the same input laser, yet are self-cleaned into independent multimode fibres.
View Article and Find Full Text PDFBeam self-imaging in nonlinear graded-index multimode optical fibers is of interest for many applications, such as implementing a fast saturable absorber mechanism in fiber lasers via multimode interference. We obtain a new exact solution for the nonlinear evolution of first and second order moments of a laser beam of arbitrary transverse shape carried by a graded-index multimode fiber. We have experimentally directly visualized the longitudinal evolution of beam self-imaging by means of femtosecond laser pulse propagation in both the anomalous and the normal dispersion regime of a standard telecom graded-index multimode optical fiber.
View Article and Find Full Text PDFWe experimentally study polarization dynamics of Kerr beam self-cleaning in a graded-index multimode optical fiber. We show that spatial beam cleaning is accompanied by nonlinear polarization rotation and a significant increase of the degree of linear polarization.
View Article and Find Full Text PDFA supercontinuum laser source was designed for multiplex-coherent anti-Stokes Raman scattering spectroscopy. This source was based on the use of a germanium-doped standard optical fiber with a zero dispersion wavelength at 1600 nm and pumped at 1064 nm. We analyzed the nonlinear spectro-temporal interrelations of a subnanosecond pulse propagating in a normal dispersion regime in the presence of a multiple Raman cascading process and strong conversion.
View Article and Find Full Text PDFSpatiotemporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-ns pulses at 1064 nm.
View Article and Find Full Text PDFWe generated a broad spectrum of light between 1064 and 1300 nm in the infrared by cascading stimulated Raman scattering in a potassium titanyl phosphate crystal while broadband conversion of the infrared Raman cascade was simultaneously achieved in the visible through second-harmonic generation (SHG) and sum-frequency mixing. We observed that odd- and even-order cascaded Stokes components were spatially addressed at different angles of propagation in the crystal. The efficiency of SHG and sum-frequency mixing is discussed as a function of the pump polarization.
View Article and Find Full Text PDFIn this paper, we describe and investigate the properties of a broadband source designed from a nanosecond microchip laser operating at high repetition rate and dedicated to multiplex-CARS application. We demonstrate that a strong reshaping of the initial pulse profile drastically affects the Stokes wave and therefore represents an important limitation in CARS experiment. In particular, we emphasize the saturation effect of the peak power of the Stokes wave resulting from supercontinuum generation.
View Article and Find Full Text PDFWe experimentally study Bragg-scattering four-wave mixing in a highly nonlinear fiber at telecom wavelengths using photon counters. We explore the polarization dependence of this process with a continuous wave signal in the macroscopic and attenuated regime, with a wavelength shift of 23 nm. Our measurements of mean photon numbers per second under various pump polarization configurations agree well with the theoretical and numerical predictions based on classical models.
View Article and Find Full Text PDFThis paper demonstrates the use of a nonlinear upconversion process to observe an infrared source through a telescope array detecting the interferometric signal in the visible domain. We experimentally demonstrate the possibility to retrieve information on the phase of the object spectrum of an infrared source by using a three-arm upconversion interferometer. We focus our study on the acquisition of phase information of the complex visibility by means of the phase closure technique.
View Article and Find Full Text PDFWe experimentally demonstrate strong second-harmonic-generation from a self-induced all-optical poling in germanium-doped fiber with a subnanosecond laser pump at 1064 nm. The large second-harmonic conversion efficiency allows nonlinear spectral broadening at visible wavelengths so that up to nine distinct Raman sidebands have been obtained. In this work we emphasize how the Raman scattering, induced from the pump in the IR region, can drastically affect the optical poling effect, limiting in turn second-harmonic generation.
View Article and Find Full Text PDFTaking advantage of the combination of stimulated Raman scattering and nonlinear polarization rotation in a single-mode optical fiber, a temporal reshaping of subnanosecond pulses is achieved by means of both spectral and polarization filtering. Shortening of 650 ps down to 43 ps temporally and spectrally stable pulses is experimentally obtained. Numerical simulations supporting this new temporal filtering are presented.
View Article and Find Full Text PDFWe present the generation of a picosecond polarized supercontinuum in highly birefringent multimodal microstructured fiber. The initial steps of the spectral broadening are dominated by intermodal four-wave mixing controlled by the specific fiber design. Using a low repetition rate ultra-stable solid state laser, a pulse train well-suited for versatile time-domain fluorescence lifetime imaging applications is obtained.
View Article and Find Full Text PDFIntermodal four-wave mixing (FWM) in microstructured optical fibers (MOF) is studied theoretically and experimentally. The dependance of FWM frequency detuning on the geometrical parameters of the fiber, namely the pitch, the core width and the air-filling fraction is derived. We propose to use the results of this investigation to control the position of the Stokes and anti-Stokes waves directly from the fiber transverse structure drawing without the need for time-consuming simulations as in usual design procedures.
View Article and Find Full Text PDFIn this work, we theoretically and experimentally analyzed the resilience of 40 Gb/s amplitude shift keying modulation formats to transmission impairments in standard single-mode fiber lines as well as to optical filtering introduced by the optical add/drop multiplexer cascade. Our study is a pre-requisite to assess the implementation of cost-effective 40 Gb/s modulation technology in next generation high bit-rate robust optical transport networks.
View Article and Find Full Text PDFWe perform a linear stability analysis of the Ablowitz-Biondini equations to explain the dynamic evolution of the noise squeezing, caused by the interplay among optical solitons and noise components, of initially uncorrelated statistics in fiber systems with dispersion management.
View Article and Find Full Text PDF