Publications by authors named "Alessandro Tibo"

In the realm of biomedical research, understanding the intricate structure of proteins is crucial, as these structures determine how proteins function within our bodies and interact with potential drugs. Traditionally, methods like X-ray crystallography and cryo-electron microscopy have been used to unravel these structures, but they are often challenging, time-consuming and costly. Recently, a breakthrough in computational biology has emerged with the development of deep learning algorithms capable of predicting protein structures based on their amino acid sequences (Jumper, J.

View Article and Find Full Text PDF

How many near-neighbors does a molecule have? This fundamental question in chemistry is crucial for molecular optimization problems under the similarity principle assumption. Generative models can sample molecules from a vast chemical space but lack explicit knowledge about molecular similarity. Therefore, these models need guidance from reinforcement learning to sample a relevant similar chemical space.

View Article and Find Full Text PDF

Designing compounds with a range of desirable properties is a fundamental challenge in drug discovery. In pre-clinical early drug discovery, novel compounds are often designed based on an already existing promising starting compound through structural modifications for further property optimization. Recently, transformer-based deep learning models have been explored for the task of molecular optimization by training on pairs of similar molecules.

View Article and Find Full Text PDF

Synthesis planning of new pharmaceutical compounds is a well-known bottleneck in modern drug design. Template-free methods, such as transformers, have recently been proposed as an alternative to template-based methods for single-step retrosynthetic predictions. Here, we trained and evaluated a transformer model, called the Chemformer, for retrosynthesis predictions within drug discovery.

View Article and Find Full Text PDF

Reinforcement learning (RL) is a powerful and flexible paradigm for searching for solutions in high-dimensional action spaces. However, bridging the gap between playing computer games with thousands of simulated episodes and solving real scientific problems with complex and involved environments (up to actual laboratory experiments) requires improvements in terms of sample efficiency to make the most of expensive information. The discovery of new drugs is a major commercial application of RL, motivated by the very large nature of the chemical space and the need to perform multiparameter optimization (MPO) across different properties.

View Article and Find Full Text PDF

REINVENT 4 is a modern open-source generative AI framework for the design of small molecules. The software utilizes recurrent neural networks and transformer architectures to drive molecule generation. These generators are seamlessly embedded within the general machine learning optimization algorithms, transfer learning, reinforcement learning and curriculum learning.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

The distinct organization of the brain's vascular network ensures that it is adequately supplied with oxygen and nutrients. However, despite this fundamental role, a detailed reconstruction of the brain-wide vasculature at the capillary level remains elusive, due to insufficient image quality using the best available techniques. Here, we demonstrate a novel approach that improves vascular demarcation by combining CLARITY with a vascular staining approach that can fill the entire blood vessel lumen and imaging with light-sheet fluorescence microscopy.

View Article and Find Full Text PDF