Publications by authors named "Alessandro Rozza"

Contextual bandits can solve a huge range of real-world problems. However, current popular algorithms to solve them either rely on linear models or unreliable uncertainty estimation in non-linear models, which are required to deal with the exploration-exploitation trade-off. Inspired by theories of human cognition, we introduce novel techniques that use maximum entropy exploration, relying on neural networks to find optimal policies in settings with both continuous and discrete action spaces.

View Article and Find Full Text PDF

The aesthetic quality of an image is defined as the measure or appreciation of the beauty of an image. Aesthetics is inherently a subjective property but there are certain factors that influence it such as, the semantic content of the image, the attributes describing the artistic aspect, the photographic setup used for the shot, etc. In this paper we propose a method for the automatic prediction of the aesthetics of an image that is based on the analysis of the semantic content, the artistic style and the composition of the image.

View Article and Find Full Text PDF

We propose an anomaly detection based image quality assessment method which exploits the correlations between feature maps from a pre-trained Convolutional Neural Network (CNN). The proposed method encodes the intra-layer correlation through the Gram matrix and then estimates the quality score combining the average of the correlation and the output from an anomaly detection method. The latter evaluates the degree of abnormality of an image by computing a correlation similarity with respect to a dictionary of pristine images.

View Article and Find Full Text PDF

Motion detection in video streams is a challenging task for several computer vision applications. Indeed, segmentation of moving and static elements in the scene allows to increase the efficiency of several challenging tasks, such as human-computer interface, robot visions, and intelligent surveillance systems. In this paper, we approach motion detection through a multi-layered artificial neural network, which is able to build for each background pixel a multi-modal color distribution evolving over time through self-organization.

View Article and Find Full Text PDF