Publications by authors named "Alessandro Pistone"

To date, not many studies have presented evidence of SARS-CoV-2 infecting the female reproductive system. Furthermore, so far, no effect of the administration of anti-COVID 19 vaccines has been reported to affect the quality of oocytes retrieved from women who resorted to assisted reproduction technology (ART). The FF metabolic profiles of women who had been infected by SARS-CoV-2 before IVF treatments or after COVID-19 vaccination were examined by H NMR.

View Article and Find Full Text PDF

Up Regulation Gene seven (URG7) is the pseudogene 2 of the transporter ABCC6. The translated URG7 protein is localized with its single transmembrane α-helix in the endoplasmic reticulum (ER) membrane, orienting the N- and C-terminal regions in the lumen and cytoplasm, respectively, and it plays a crucial role in the folding of ER proteins. Previously, the C-terminal region of URG7 (PU, residues 75-99) has been shown to modify the aggregation state of α-synuclein in the lysate of HepG2 cells.

View Article and Find Full Text PDF

This work deals with the synthesis of bare and curcumin (CUR)-loaded chitosan (CS)-based macroparticles by ionic gelation using sodium hydroxide (NaOH) or sodium tripolyphosphate (TPP). The resulting spherical-shaped macroparticles were studied using various characterization techniques, Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC). The release of CUR from the CS-based particles with respect to time was analyzed, and the encapsulation efficiency and degree of swelling were studied.

View Article and Find Full Text PDF

Robotic manipulators provide advantages in working environments regarding efficiency and safety, which is further increased in the case of elastic joint manipulators, whose mechanical compliance reduces the energy involved in collisions with workers. Cable-driven manipulators are elastic joint manipulators particularly suitable for industrial inspection thanks to the relocation of actuators outside hostile environments, increasing the manipulator payload-to-weight ratio. Recently, synthetic fibre cables are substituting steel cables due to their better-performing mechanical properties, but their visco-elastic behaviour must be compensated in the controller design.

View Article and Find Full Text PDF

A deep speciation study on L-carnosine (CAR) and Pb system was performed in aqueous solution with the aim to assess its potential use as a sequestering agent of metal cation. To determine the best conditions for Pb complexation, potentiometric measurements were carried out over a wide range of ionic strength (0.15 ≤ I/≤ 1 mol/L) and temperature (15 ≤ T/°C ≤ 37), and thermodynamic interaction parameters (logβ, ΔH, ΔG and TΔS) were determined.

View Article and Find Full Text PDF

In this paper, we report the synthesis and characterization of novel coatings based on (3-aminopropyl)-triethoxysilane (AP) mixed with different amounts of glutaraldehyde (GA). The synthesized coatings have been layered on a glass substrate and characterized by optical microscopy and roughness measurements, thermogravimetric analyses and differential scanning calorimetry, contact angle analysis, rheological measurement, and an adhesion test. It was observed that the higher the GA content (up to AP:GA ratio of 0.

View Article and Find Full Text PDF

Additive manufacturing, civil, and biomechanical applications are among the most important sectors, where the filler's presence can significantly improve the quality of polymeric products blends. The high market demand of new low-cost material to be used as shock absorbers and mechanical joints arouses our curiosity to study a relatively common commercial polymer and filler. The possible improvement by blending high-density polyethylene (HDPE) and graphite was investigated for these sectors.

View Article and Find Full Text PDF

Marine pollution due to spillage of hydrocarbons represents a well-known current environmental problem. In order to recover the otherwise wasted oils and to prevent pollution damage, polyurethane foams are considered suitable materials for their ability to separate oils from sea-water and for their reusability. In this work we studied polyurethane foams filled with carbon nanofibers, in varying amounts, aimed at enhancing the selectivity of the material towards the oils and at improving the mechanical durability of the foam.

View Article and Find Full Text PDF

The accumulation of marine organisms on ship hulls, such as microorganisms, barnacles, and seaweeds, represents a global problem for maritime industries, with both economic and environmental costs. The use of biocide-containing paints poses a serious threat to marine ecosystems, affecting both target and non-target organisms driving science and technology towards non-biocidal solutions based on physico-chemical and materials properties of coatings. The review reports recent development of hydrophobic protective coatings in terms of mechanical properties, correlated with the wet ability features.

View Article and Find Full Text PDF

In this paper, a new formulation of biodegradable and bioresorbable chitosan-based hydrogel for controlled drug release was investigated. A chitosan-dendrimer-hydroxyapatite hydrogel, obtained by covalently grafting chitosan powder with an hyperbranched PAMAM dendrimer followed by in-situ precipitation of hydroxyapatite and gelification, was synthesized and characterized by FTIR, NMR, TGA, XRD and rheological studies. The hydrogels have been also doped with an anti-inflammatory drug (ketoprofen) in order to investigate their drug release properties.

View Article and Find Full Text PDF

Functionalized polyhedral oligosilsesquioxanes (POSS) containing an isoxazolidine nucleus have been synthesized by microwave assisted 1,3-dipolar cycloaddition of -methyl--alkoxycarbonyl nitrone 1 with POSS containing olefin moieties. The results of cycloaddition processes were rationalized by computational studies at the DFT level. The covalent conjugation of chitosan with the cycloadduct 3a leads to composite material CS-POSS 7 which was gelified using genipin as cross linking agent.

View Article and Find Full Text PDF

Bioabsorbable materials have received increasing attention as innovative systems for the development of osteoconductive biomaterials for bone tissue engineering. In this paper, chitosan-based composites were synthesized adding hydroxyapatite and/or magnetite in a chitosan matrix by in situ precipitation technique. Composites were characterized by optical and electron microscopy, thermogravimetric analyses (TGA), x-ray diffraction (XRD), and in vitro cell culture studies.

View Article and Find Full Text PDF

Human exposure to carbon nanotubes (CNTs) can cause health issues due to their chemical-physical features and biological interactions. These nanostructures cause oxidative stress, also due to endogenous reactive oxygen species (ROS) production, which increases following mitochondrial impairment. The aim of this in vitro study was to assess the health effects, due to mitochondrial dysfunction, caused by a sub-chronic exposure to a non-acutely toxic dose of multi walled CNTs (raw and functionalised).

View Article and Find Full Text PDF

Graphene quantum dots (GQD), the new generation members of graphene-family, have shown promising applications in anticancer therapy. In this study, we report the synthesis of a fluorescent and biocompatible nanovector, based on GQD, for the targeted delivery of an anticancer drug with benzofuran structure (BFG) and bearing the targeting ligand riboflavin (RF, vitamin B2). The highly water-dispersible nanoparticles, synthesized from multi-walled carbon nanotubes (MWCNT) by prolonged acidic treatment, were linked covalently to the drug by means of a cleavable PEG linker while the targeting ligand RF was conjugated to the GQD by π⁻π interaction using a pyrene linker.

View Article and Find Full Text PDF

Polyester can coatings protect both food and packaging from mutual contamination. Even though, can coatings may release Non-Intentionally Added Substances (NIAS) in addition to Intentionally Added Substances (IAS). As NIAS are mainly constituted by cyclic or linear side products that are formed during the polymerization process, we focused our attention on these oligomeric species of molecular weight <1000 Da.

View Article and Find Full Text PDF

Graphene quantum dots (GQD) are the next generation of nanomaterials with great potential in drug delivery and target-specific HIV inhibition. In this study we investigated the antiviral activity of graphene based nanomaterials by using water-soluble GQD synthesized from multiwalled carbon nanotubes (MWCNT) through prolonged acidic oxidation and exfoliation and compared their anti-HIV activity with that exerted by reverse transcriptase inhibitors (RTI) conjugated with the same nanomaterial. The antiretroviral agents chosen in this study, CHI499 and CDF119, belong to the class of non-nucleoside reverse transcriptase inhibitors (NNRTI).

View Article and Find Full Text PDF

Multi walled carbon nanotubes (MWCNTs) activate pathways involved in cytotoxicity, genotoxicity and inflammation. Inhaled MWCNTs are translocated to extra pulmonary organs and their hydrophobicity allows them to cross the blood-brain barrier (BBB). Further exposure of central nervous system (CNS) occurs via olfactory neurons.

View Article and Find Full Text PDF

Graphene quantum dots, the next generation carbon based nanomaterials, due to their outstanding physical, chemical and biological properties, have shown potential in revolutionizing the future of nanomedicine and biotechnology. Their strong size-dependent photoluminescence (PL) and the presence of reactive groups on the GQD surface, which allow their multimodal conjugation with various functional groups and biologically active molecules, make them ideal candidates for cancer diagnosis and treatment. GQDs have been loaded with drugs and labeled with tumor-targeting ligand units that are able to specifically recognize cancer receptors exposed on the cancer cell surface by generating new therapies that are able to allow a more efficient targeted delivery of anticancer agents while minimizing their distribution in healthy tissues, as well as the development of new imaging agents for the in vitro and in vivo diagnosis of several types of cancer.

View Article and Find Full Text PDF

Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P.

View Article and Find Full Text PDF

We report in this paper the effects of Ethyl Ester L-Lysine Triisocyanate (LTI) on the physical-mechanical properties of Poly(lactide)/Poly(ε-caprolactone) (PLA/PCL) polyesters blends. The PLA/PCL ratios considered were 20/80, 50/50 and 80/20 (wt/wt %) and LTI was added in amounts of 0.0-0.

View Article and Find Full Text PDF

This study aimed to investigate the role of iron, used as a catalyst, in the biological response to pristine and functionalized multi-walled carbon nanotubes (p/fMWCNTs) with an iron content of 2.5-2.8%.

View Article and Find Full Text PDF

A biocompatible and cell traceable drug delivery system Graphene Quantum Dots (GQD) based, for the targeted delivery of the DNA intercalating drug doxorubicin (DOX) to cancer cells, is here reported. Highly dispersible and water soluble GQD, synthesized by acidic oxidation and exfoliation of multi-walled carbon nanotubes (MWCNT), were covalently linked to the tumor targeting module biotin (BTN), able to efficiently recognize biotin receptors over-expressed on cancer cells and loaded with DOX. Biological test performed on A549 cells reported a very low toxicity of the synthesized carrier (GQD and GQD-BTN).

View Article and Find Full Text PDF

Two pH and temperature controlled drug delivery systems for cancer therapy are here reported by using vapour phase and liquid phase functionalized multiwalled carbon nanotubes (MWCNT). Both oxidized MWCNT were functionalized at the carboxyl groups with a short hydrophilic polyethylene glycol (PEG) chain. The nanosystems were loaded with doxorubicin and covered with the biocompatible polymer polylactide, able to form hydrogen bonding with PEG and to entrape the drug inside the two polymeric chains.

View Article and Find Full Text PDF

An in vitro model resembling the respiratory epithelium was used to investigate the biological response to laboratory-made pristine and functionalised multi-walled carbon nanotubes (pMWCNT and MWCNT-COOH). Cell uptake was analysed by MWCNT-COOH, FITC labelled and the effect of internalisation was evaluated on the endocytic apparatus, mitochondrial compartment and DNA integrity. In the dose range 12.

View Article and Find Full Text PDF

The design of β-cyclodextrin/multiwalled carbon nanotubes hybrid (β-CD-MWCNT) as nanoplatform for the entrapment and delivery of guanine based drugs is described here. The functionalized carbon nanomaterials have been characterized by XPS spectroscopy, electron microscopy (FEG-SEM and TEM), AFM, TGA, and FT-IR to achieve insights on structure, morphology and chemical composition. The drug binding abilities of nanocarrier towards the guanine (G) and Acyclovir (Acy) were proved by UV-vis and DSC experiments.

View Article and Find Full Text PDF