Microbial complexity and contamination levels in food processing plants heavily impact the final product fate and are mainly controlled by proper environmental cleaning and sanitizing. Among the emerging disinfection technologies, ozonation is considered an effective strategy to improve the ordinary cleaning and sanitizing of slaughterhouses. However, its effects on contamination levels and environmental microbiota still need to be understood.
View Article and Find Full Text PDFExopolysaccharide (EPS)-producing bacteria are of growing interest in industrial processes, mainly concerning food. Lactic acid bacteria are widely appreciated for their GRAS (generally recognized as safe) status and their ascertained or putative probiotic features. Detailed investigation on what happens at metabolic level during EPS production is scarce in the literature.
View Article and Find Full Text PDFCurr Protein Pept Sci
April 2015
Selenium (Se) is an essential trace element for humans, plants and microorganisms. Inorganic selenium is present in nature in four oxidation states: selenate, selenite, elemental Se and selenide in decreasing order of redox status. These forms are converted by all biological systems into more bioavailable organic forms, mainly as the two seleno-amino acids selenocysteine and selenomethionine.
View Article and Find Full Text PDFThe growing demand of biodegradable plastic polymers is increasing the industrial need of enantiospecific l-lactic acid (l-LA), the building block to produce polylactides. The most suitable industrial strategy to obtain high amounts of LA is the microbial fermentation of fruit and vegetable wastes by lactic acid bacteria (LAB). In this paper seven LAB strains from our laboratory collection, were screened for their ability to produce the highest amount of pure l-LA.
View Article and Find Full Text PDFThe use of Enterococcus faecalis in the food industry has come under dispute because of the pathogenic potential of some strains of this species. In this study, we have compared the secretome and whole-cell proteome of one food isolate (E. faecalis DISAV 1022) and one clinical isolate (E.
View Article and Find Full Text PDFSelenium (Se), Se-cysteines and selenoproteins have received growing interest in the nutritional field as redox-balance modulating agents. The aim of this study was to establish the Se-concentrating and Se-metabolizing capabilities of the probiotic Lactobacillus reuteri Lb26 BM, for nutraceutical applications. A comparative proteomic approach was employed to study the bacteria grown in a control condition (MRS modified medium) and in a stimulated condition (4.
View Article and Find Full Text PDFLactic acid bacteria (LAB) are very ancient organisms that can't obtain metabolic energy by respiration without external heme supplementation. Since the gain in ATP from lactic fermentation is inadequate to support efficient growth, they developed alternative strategies for energy production. Three main energy generating routes are present in LAB: amino acid decarboxylation, malate decarboxylation and arginine deimination (ADI pathway).
View Article and Find Full Text PDFThe soluble and membrane proteome of a tyramine producing Enterococcus faecalis, isolated from an Italian goat cheese, was investigated. A detailed analysis revealed that this strain also produces small amounts of beta-phenylethylamine. Kinetics of tyramine and beta-phenylethylamine accumulation, evaluated in tyrosine plus phenylalanine-enriched cultures (stimulated condition), suggest that the same enzyme, the tyrosine decarboxylase (TDC), catalyzes both tyrosine and phenylalanine decarboxylation: tyrosine was recognized as the first substrate and completely converted into tyramine (100% yield) while phenylalanine was decarboxylated to beta-phenylethylamine (10% yield) only when tyrosine was completely depleted.
View Article and Find Full Text PDF