Background: The thymus, responsible for T cell-mediated adaptive immune system, has a structural and functional complexity that is not yet fully understood. Until now, thymic anatomy has been studied using histological thin sections or confocal microscopy 3D reconstruction, necessarily for limited volumes.
Methods: We used Phase Contrast X-Ray Computed Tomography to address the lack of whole-organ volumetric information on the microarchitecture of its structural components.
Two-directional beam-tracking (2DBT) is a method for phase-contrast imaging and tomography that uses an intensity modulator to structure the X-ray beam into an array of independent circular beamlets that are resolved by a high-resolution detector. It features isotropic spatial resolution, provides two-dimensional phase sensitivity, and enables the three-dimensional reconstructions of the refractive index decrement, δ, and the attenuation coefficient, μ. In this work, the angular sensitivity and the spatial resolution of 2DBT images in a synchrotron-based implementation is reported.
View Article and Find Full Text PDFTo report on a micro computed tomography (micro-CT) system capable of x-ray phase contrast imaging and of increasing spatial resolution at constant magnification.The micro-CT system implements the edge illumination (EI) method, which relies on two absorbing masks with periodically spaced transmitting apertures in the beam path; these split the beam into an array of beamlets and provide sensitivity to the beamlets' directionality, i.e.
View Article and Find Full Text PDFFollowing the rapid, but independent, diffusion of x-ray spectral and phase-contrast systems, this work demonstrates the first combination of spectral and phase-contrast computed tomography (CT) obtained by using the edge-illumination technique and a CdTe small-pixel (62m) spectral detector. A theoretical model is introduced, starting from a standard attenuation-based spectral decomposition and leading to spectral phase-contrast material decomposition. Each step of the model is followed by quantification of accuracy and sensitivity on experimental data of a test phantom containing different solutions with known concentrations.
View Article and Find Full Text PDFIsolation of tissue-specific fetal stem cells and derivation of primary organoids is limited to samples obtained from termination of pregnancies, hampering prenatal investigation of fetal development and congenital diseases. Therefore, new patient-specific in vitro models are needed. To this aim, isolation and expansion of fetal stem cells during pregnancy, without the need for tissue samples or reprogramming, would be advantageous.
View Article and Find Full Text PDFX-ray microtomography is a nondestructive, three-dimensional inspection technique applied across a vast range of fields and disciplines, ranging from research to industrial, encompassing engineering, biology, and medical research. Phase-contrast imaging extends the domain of application of x-ray microtomography to classes of samples that exhibit weak attenuation, thus appearing with poor contrast in standard x-ray imaging. Notable examples are low-atomic-number materials, like carbon-fiber composites, soft matter, and biological soft tissues.
View Article and Find Full Text PDFBackground: Microscopic imaging of cartilage is a key tool for the study and development of treatments for osteoarthritis. When cellular and sub-cellular resolution is required, histology remains the gold standard approach, albeit limited by the lack of volumetric information as well as by processing artifacts. Cartilage imaging with the sub-cellular resolution has only been demonstrated in the synchrotron environment.
View Article and Find Full Text PDFAttenuation masks can be used in x-ray imaging systems to increase their inherent spatial resolution and/or make them sensitive to phase effects, a typical example being Edge Illumination x-ray phase contrast imaging (EI-XPCI). This work investigates the performance of a mask-based system such as EI-XPCI in terms of Modulation Transfer Function (MTF), in the absence of phase effects..
View Article and Find Full Text PDFLaser-plasma accelerators are compact linear accelerators based on the interaction of high-power lasers with plasma to form accelerating structures up to 1000 times smaller than standard radiofrequency cavities, and they come with an embedded X-ray source, namely betatron source, with unique properties: small source size and femtosecond pulse duration. A still unexplored possibility to exploit the betatron source comes from combining it with imaging methods able to encode multiple information like transmission and phase into a single-shot acquisition approach. In this work, we combine edge illumination-beam tracking (EI-BT) with a betatron X-ray source and present the demonstration of multimodal imaging (transmission, refraction, and scattering) with a compact light source down to the femtosecond timescale.
View Article and Find Full Text PDFCycloidal computed tomography provides high-resolution images within relatively short scan times by combining beam modulation with dedicated under-sampling. However, implementing the technique relies on accurate knowledge of the sample's motion, particularly in the case of continuous scans, which is often unavailable due to hardware or software limitations. We have developed an easy-to-implement position tracking technique using a sharp edge, which can provide reliable information about the trajectory of the sample and thus improve the reconstruction process.
View Article and Find Full Text PDFIn this work, the application of a time resolved multi-contrast beam tracking technique to the investigation of the melting and solidification process in metals is presented. The use of such a technique allows retrieval of three contrast channels, transmission, refraction and dark-field, with millisecond time resolution. We investigated different melting conditions to characterize, at a proof-of-concept level, the features visible in each of the contrast channels.
View Article and Find Full Text PDFWe report on the development of a low-energy x-ray phase-based microscope using intensity-modulation masks for single-shot retrieval of three contrast channels: transmission, refraction, and ultra-small-angle scattering or dark field. The retrieval method is based on beam tracking, an incoherent and phase-based imaging approach. We demonstrate that the spatial resolution of this imaging system does not depend on focal spot size nor detector pixel pitch, as opposed to conventional and propagation-based x-ray imaging, and it is only dependent on the mask aperture size.
View Article and Find Full Text PDFBackground And Aims: Long-term durability data for effectiveness of radiofrequency ablation (RFA) to prevent esophageal adenocarcinoma in patients with dysplastic Barrett's esophagus (BE) are lacking.
Methods: We prospectively collected data from 2535 patients with BE (mean length, 5.2 cm; range, 1-20) and neoplasia (20% low-grade dysplasia, 54% high-grade dysplasia, 26% intramucosal carcinoma) who underwent RFA therapy across 28 UK hospitals.
Tissue engineering (TE) aims to generate bioengineered constructs which can offer a surgical treatment for many conditions involving tissue or organ loss. Construct generation must be guided by suitable assessment tools. However, most current tools (e.
View Article and Find Full Text PDFIn x-ray computed tomography (CT), the achievable image resolution is typically limited by several pre-fixed characteristics of the x-ray source and detector. Structuring the x-ray beam using a mask with alternating opaque and transmitting septa can overcome this limit. However, the use of a mask imposes an undersampling problem: to obtain complete datasets, significant lateral sample stepping is needed in addition to the sample rotation, resulting in high x-ray doses and long acquisition times.
View Article and Find Full Text PDFThe assessment of margin involvement is a fundamental task in breast conserving surgery to prevent recurrences and reoperations. It is usually performed through histology, which makes the process time consuming and can prevent the complete volumetric analysis of large specimens. X-ray phase contrast tomography combines high resolution, sufficient penetration depth and high soft tissue contrast, and can therefore provide a potential solution to this problem.
View Article and Find Full Text PDFWe present a dynamic implementation of the beam-tracking x-ray imaging method providing absorption, phase, and ultrasmall angle scattering signals with microscopic resolution and high frame rate. We demonstrate the method's ability to capture dynamic processes with 22-ms time resolution by investigating the melting of metals in laser additive manufacturing, which has so far been limited to single-modality synchrotron radiography. The simultaneous availability of three contrast channels enables earlier segmentation of droplets, tracking of powder dynamic, and estimation of unfused powder amounts, demonstrating that the method can provide additional information on melting processes.
View Article and Find Full Text PDFPurpose: In this work, an analytical model describing the noise in the retrieved three contrast channels, transmission, refraction, and ultra small-angle scattering, obtained with edge illumination X-ray phase-based imaging system is presented and compared to experimental data.
Methods: In EI, images acquired at different displacements of the presample mask (i.e.
Greater attention to bus safety can lead to relevant benefits for public transport companies in terms of higher service performance, reliability, and lower insurance costs. Therefore, measuring the crash risk on bus routes provides an opportunity to improve the safety performance of transit operators. Previous research has explored the effects of many factors regarding the frequency and severity of bus crashes, whereas only a handful of studies have defined some crash risk indexes.
View Article and Find Full Text PDFPurpose: Cycloidal computed tomography is a novel imaging concept which combines a highly structured x-ray beam, offset lateral under-sampling, and mathematical data recovery to obtain high-resolution images efficiently and flexibly, even with relatively large source focal spots and detector pixels. The method reduces scanning time and, potentially, delivered dose compared to other sampling schemes. This study aims to present and discuss several implementation strategies for cycloidal computed tomography (CT) in order to increase its ease of use and facilitate uptake within the imaging community.
View Article and Find Full Text PDFAlthough early demonstration dates back to the mid-sixties, x-ray phase-contrast imaging (XPCI) became hugely popular in the mid-90s, thanks to the advent of 3rd generation synchrotron facilities. Its ability to reveal object features that had so far been considered invisible to x-rays immediately suggested great potential for applications across the life and the physical sciences, and an increasing number of groups worldwide started experimenting with it. At that time, it looked like a synchrotron facility was strictly necessary to perform XPCI with some degree of efficiency-the only alternative being micro-focal sources, the limited flux of which imposed excessively long exposure times.
View Article and Find Full Text PDFArtifacts arising when differential phase images are integrated is a common problem to several X-ray phase-based experimental techniques. The combination of noise and insufficient sampling of the high-frequency differential phase signal leads to the formation of streak artifacts in the projections, translating into poor image quality in the tomography slices. In this work, we apply a non-iterative integration algorithm proven to reduce streak artifacts in planar (2D) images to a differential phase tomography scan.
View Article and Find Full Text PDF