Publications by authors named "Alessandro Novellino"

The study aims to analyse ground displacement conditions observed over an Underground Gas Storage (UGS) site located at Hatfield Moors (United Kingdom), with a focus on understanding its implications for decarbonization efforts. The location serves as an active onshore storage site and was used as an analogy to assess ground motion implications around Carbon Capture and Storage (CCS) by the British Geological Survey (BGS) as part of the SENSE (Assuring integrity of CO storage sites through ground surface monitoring) project. Given the value of continuous and real-time monitoring of ground movements induced by gas storage activities, the study leverages satellite Interferometric Synthetic Aperture Radar (InSAR) data to assess the environmental impact of UGS operations.

View Article and Find Full Text PDF

Subsurface geonergy can induce ground motion and seismicity, however a scarcity of observations usually obscures the mechanisms underpinning such behaviour. Here, we analyse Interferometric Synthetic Aperture Radar (InSAR) data from ERS, ENVISAT and Sentinel-1 satellites for the period 1995-2017 and interpret ground deformation in the area of the planned Cheshire UK GeoEnergy Observatory ahead of facility contruction. Ground motion is dominated by the compaction of tidal flat deposits overlying two paleo-valleys, trending NNW-SSE.

View Article and Find Full Text PDF

This paper presents the results of an investigation on a Deep Seated Gravitational Slope Deformation (DSGSD), previously only hypothesized by some authors, affecting Bisaccia, a small town located in Campania region, Italy. The study was conducted through the integration of conventional methods (geological-geomorphological field survey, air-photo interpretation) and an Advanced-Differential Interferometry Synthetic Aperture Radar (A-DInSAR) technique. The DSGSD involves a brittle lithotype (conglomerates of the Ariano Irpino Supersynthem) resting over a Structurally Complex Formation (Varycoloured Clays of Calaggio Formation).

View Article and Find Full Text PDF