Publications by authors named "Alessandro Nicola Nardi"

The charge transfer (CT) reactions in nucleic acids are crucial for genome damage and repair and nanoelectronics using DNA as a molecular conductor. Previous experimental and theoretical works underlined the significance of nucleic acid structural dynamics on CT kinetics, requiring models that incorporate the dynamics of the nucleic acid, solvents, and counterions. Here, we investigated hole transfer kinetics in poly adenine single and double strands at various temperatures and the rate enhancement due to adenine-to-7-deazaadenine mutation by means of a QM/MM approach.

View Article and Find Full Text PDF

Maintaining the integrity of the genome is fundamental to living organisms. To this end, nature developed several mechanisms to find and promptly repair DNA lesions. Among them, base excision repair (BER) enzymes evolved to efficiently carry out this task.

View Article and Find Full Text PDF

Hypothesis: Renal calculi (kidney stones) are mainly made by calcium oxalate and can cause different complications including malfunction of the kidney. The most important urinary stone inhibitors are citrate molecules. Unfortunately, the amount of citrate reaching the kidney after oral ingestion is low.

View Article and Find Full Text PDF

TipA, a MerR family transcription factor from , promotes antibiotic resistance by sequestering broad-spectrum thiopeptide-based antibiotics, thus counteracting their inhibitory effect on ribosomes. TipAS, a minimal binding motif which is expressed as an isoform of TipA, harbors a partially disordered N-terminal subdomain that folds upon binding multiple antibiotics. The extent and nature of the underlying molecular heterogeneity in TipAS that shapes its promiscuous folding-function landscape is an open question and is critical for understanding antibiotic-sequestration mechanisms.

View Article and Find Full Text PDF

The knowledge of the mechanism of reactions occurring in solution is a primary research line both in the context of theoretical-computational chemistry and in the field of organic and bio-organic chemistry. Given the importance of the hydrolysis of nucleic acids in life-related phenomena, here we present a combined experimental and computational study on the cleavage of an RNA model compound. This phosphodiester features a cleavage rate strictly dependent on the pH with three different dependence domains.

View Article and Find Full Text PDF

The hydrolysis of the phosphodiester bond is an important chemical reaction involved in several biological processes. Here, we study the cleavage of this bond by means of a theoretical-computational method in a model system, the dineopentyl phosphate. By such an approach, we reconstructed the kinetics and related thermodynamics of this chemical reaction along an isochore.

View Article and Find Full Text PDF

In this work, a theoretical-computational method is applied to study the deamidation reaction, a critical post-translational modification in proteins, using a simple model molecule in solution. The method allows one to comprehensively address the environmental effect, thereby enabling one to accurately derive the kinetic rate constants for the three main steps of the deamidation process. The results presented, in rather good agreement with the available experimental data, underline the necessity for a rigorous treatment of environmental factors and a precise kinetic model to correctly assess the overall kinetics of the deamidation reaction.

View Article and Find Full Text PDF

Cyanidin 3-O-glucoside (CND) is a frequently-used anthocyanin that has excellent antioxidant properties but a limited bioavailability in bloodstream. Complexation of CND with alginate can improve its therapeutic outcome. Here we have studied the complexation of CND with alginate under a range of pH values from 2.

View Article and Find Full Text PDF

(1) Background: the theoretical modelling of reactions occurring in liquid phase is a research line of primary importance both in theoretical-computational chemistry and in the context of organic and biological chemistry. Here we present the modelling of the kinetics of the hydroxide-promoted hydrolysis of phosphoric diesters. (2) Method: the theoretical-computational procedure involves a hybrid quantum/classical approach based on the perturbed matrix method (PMM) in conjunction with molecular mechanics.

View Article and Find Full Text PDF

Cytochrome P450 OleP catalytic activity is strongly influenced by its structural dynamic conformational behavior. Here, we combine equilibrium-binding experiments with all-atom molecular dynamics simulations to clarify how different environments affect OleP conformational equilibrium between the open and the closed-catalytic competent-forms. Our data clearly show that at high-ionic strength conditions, the closed form is favored, and, very interestingly, different mechanisms, depending on the chemistry of the cations, can be used to rationalize such an effect.

View Article and Find Full Text PDF

Quantum mechanical/molecular mechanics (QM/MM) methods are important tools in molecular modeling as they are able to couple an extended phase space sampling with an accurate description of the electronic properties of the system. Here, we describe a Python software package, called PyMM, which has been developed to apply a QM/MM approach, the perturbed matrix method, in a simple and efficient way. PyMM requires a classical atomic trajectory of the whole system and a set of unperturbed electronic properties of the ground and electronic excited states.

View Article and Find Full Text PDF

In this paper, we extend the previously described general model for charge transfer reactions, introducing specific changes to treat the hopping between energy minima of the electronic ground state (i.e., transitions between the corresponding vibrational ground states).

View Article and Find Full Text PDF

Anthracycline doxorubicin hydrochloride (DX) is a positively charged fluorescent drug, which in water self-associates into non-fluorescent antiparallel dimers upon increasing concentration and/or ionic strength. The positive charge of DX allows for complexation with negatively charged polymers and drug carriers. The fluorescence of DX following complexation with polyanion polystyrene sulfonate (PSS) is studied here.

View Article and Find Full Text PDF

The effect of the environment on the guanine redox potential is studied by means of a theoretical-computational approach. Our data, in agreement with previous experimental findings, clearly show that the presence of consecutive guanine bases in both single- and double-stranded DNA oligomers lowers their reduction potential. Such an effect is even more marked when a G-rich quadruplex is considered, where the oxidized form of guanine is particularly stabilized.

View Article and Find Full Text PDF

The experimental absorption measurements in the interval 350-600 nm (Vis), molecular dynamics simulations, quantum-mechanics calculations and an advanced molecular treatment of simulation data are here combined to provide a complete picture of the absorption behavior in the visible portion of the electromagnetic spectrum of the doxorubicin hydrochloride (DX) molecule in different environments. By such an approach, we have shown that it is possible to characterize the effect of the environment on the DX absorption behavior - including the vibronic contributions - as well as to interpret such differences in terms of molecular electronic excited states, which are found to be strongly influenced by the environment.

View Article and Find Full Text PDF

The estimation of the redox potentials of biologically relevant systems by means of theoretical-computational approaches still represents a challenge. In fact, the size of these systems typically does not allow a full quantum-mechanical treatment needed to describe electron loss/gain in such a complex environment, where the redox process takes place. Therefore, a number of different theoretical strategies have been developed so far to make the calculation of the redox free energy feasible with current computational resources.

View Article and Find Full Text PDF

Substrate binding to the cytochrome P450 OleP is coupled to a large open-to-closed transition that remodels the active site, minimizing its exposure to the external solvent. When the aglycone substrate binds, a small empty cavity is formed between the I and G helices, the BC loop, and the substrate itself, where solvent molecules accumulate mediating substrate-enzyme interactions. Herein, we analyzed the role of this cavity in substrate binding to OleP by producing three mutants (E89Y, G92W, and S240Y) to decrease its volume.

View Article and Find Full Text PDF

Here, we present the theoretical-computational modeling of the oxidation properties of four DNA nucleosides and nucleotides and a set of dinucleotides in solutions. Our estimates of the vertical ionization energies and reduction potentials, close to the corresponding experimental data, show that an accurate calculation of the molecular electronic properties in solutions requires a proper treatment of the effect of the environment. In particular, we found that the effect of the environment is to stabilize the oxidized state of the nucleobases resulting in a remarkable reduction-up to 6.

View Article and Find Full Text PDF