Publications by authors named "Alessandro Marengo"

Dexamethasone is a well-known anti-inflammatory drug readily used to treat many lung diseases. However, its side effects and poor lower airway deposition and retention are significant limitations to its usage. In this work, we developed lipid nanoparticulate platforms loaded with dexamethasone and evaluated their behavior in inflammatory lung models in vitro and in vivo.

View Article and Find Full Text PDF

Alveolar macrophages play a crucial role in the initiation and resolution of the immune response in the lungs. Pro-inflammatory M1 alveolar macrophages are an interesting target for treating inflammatory and infectious pulmonary diseases. One commune targeting strategy is to use nanoparticles conjugated with hyaluronic acid, which interact with CD44 overexpressed on the membrane of those cells.

View Article and Find Full Text PDF

Background And Purpose: Interstitial lung disease (ILD) is the main cause of mortality in systemic sclerosis (SSc), and current therapies available are of low efficacy or high toxicity. Thus, the identification of innovative less toxic and high efficacy therapeutic approaches to ILD treatment is an urgent need. The interaction of P-selectin glycoprotein ligand-1 (PSGL-1) with P-selectin initiates leukocyte extravasation and deletion of the corresponding gene (Selplg) induces a SSc-like syndrome with high incidence of ILD in aged mice.

View Article and Find Full Text PDF

Chronic lung allograft dysfunction (CLAD) and interstitial lung disease associated with collagen tissue diseases (CTD-ILD) are two end-stage lung disorders in which different chronic triggers induce activation of myo-/fibroblasts (LFs). Everolimus, an mTOR inhibitor, can be adopted as a potential strategy for CLAD and CTD-ILD, however it exerts important side effects. This study aims to exploit nanomedicine to reduce everolimus side effects encapsulating it inside liposomes targeted against LFs, expressing a high rate of CD44.

View Article and Find Full Text PDF

Collagen Tissue Disease-associated Interstitial Lung Fibrosis (CTD-ILDs) and Bronchiolitis Obliterans Syndrome (BOS) represent severe lung fibrogenic disorders, characterized by fibro-proliferation with uncontrolled extracellular matrix deposition. Hyaluronic acid (HA) plays a key role in fibrosis with its specific receptor, CD44, overexpressed by CTD-ILD and BOS cells. The aim is to use HA-liposomes to develop an inhalatory treatment for these diseases.

View Article and Find Full Text PDF

Doxorubicin (dox) is one of the first-line drug in osteosarcoma treatment but its effectiveness is limited by the efflux pump P-glycoprotein (Pgp) and by the onset of cardiotoxicity. We previously demonstrated that synthetic doxs conjugated with a HS-releasing moiety (Sdox) were less cardiotoxic and more effective than dox against Pgp-overexpressing osteosarcoma cells. In order to increase the active delivery to tumor cells, we produced hyaluronic acid (HA)-conjugated liposomes containing Sdox (HA-Lsdox), exploiting the abundance of the HA receptor CD44 in osteosarcoma.

View Article and Find Full Text PDF

Aim: To elucidate whether different cytokinetic features (i.e., presence or absence of mitotic activity) may influence cell uptake and distribution of nanocarriers, in vitro tests on liposomes, mesoporous silica nanoparticles, poly(lactide-co-glycolide) nanoparticles and nanohydrogels were carried out on C2C12 murine muscle cells either able to proliferate as myoblasts (cycling cells) or terminally differentiate into myotubes (noncycling cells).

View Article and Find Full Text PDF

Background: Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches.

View Article and Find Full Text PDF

We have prepared and evaluated the physico-chemical and biological properties of four different hyaluronated mesoporous silica nanoparticles (MSNs) samples (MSN/HA). Hyaluronic acid (HA) with two different molecular weights (200 and 6.4 kDa) was used for the conjugation of aminopropyl-functionalized MSN (NH-MSN), following two different procedures.

View Article and Find Full Text PDF

Drug efflux transporters, in particular P-glycoprotein (Pgp), limit the success of chemotherapy. We previously found that synthetic doxorubicin conjugated with nitric oxide (NO)-releasing group overcomes resistance by inducing a NO-mediated inhibition of Pgp. Here we produced the first liposomal formulations of this nitrooxy-doxorubicin decorated with folic acid (FA), termed LNDF, in order to improve their active targeting against Pgp-expressing tumors.

View Article and Find Full Text PDF

The work aimed to evaluate the feasibility to design hyaluronic acid (HA) decorated flexible liposomes to enhance the skin penetration of nifedipine. Egg phosphatidylcholine (e-PC) based transfersomes (Tween 80) and transethosomes (ethanol) were prepared. HA was reacted with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (HA-DPPE) and two molar ratios (0.

View Article and Find Full Text PDF

During the last decades, several studies have proposed manganese (Mn) complexes as alternative contrast agents for magnetic resonance imaging (MRI). With the nanotechnology surge in recent years, different types of Mn-based nanoparticles (Nps) have been developed. However, to design effective and safe administration procedures, preliminary studies on target cells, aimed at verifying their full biocompatibility and biodegradability, are mandatory.

View Article and Find Full Text PDF

In this work we prepared and characterized two liposomal formulations of a semisynthetic nitric oxide (NO)-releasing doxorubicin (Dox), called nitrooxy-Dox (NitDox), which we previously demonstrated to be cytotoxic in Dox-resistant human colon cancer cells. Liposomes with 38.2% (Lip A) and 19.

View Article and Find Full Text PDF