Organ Res Methods
July 2023
Relational event models expand the analytical possibilities of existing statistical models for interorganizational networks by: (i) making efficient use of information contained in the sequential ordering of observed events connecting sending and receiving units; (ii) accounting for the intensity of the relation between exchange partners, and (iii) distinguishing between short- and long-term network effects. We introduce a recently developed relational event model (REM) for the analysis of continuously observed interorganizational exchange relations. The combination of efficient sampling algorithms and sender-based stratification makes the models that we present particularly useful for the analysis of very large samples of relational event data generated by interaction among heterogeneous actors.
View Article and Find Full Text PDFBackground: Patients with stroke are frequently transferred between hospitals. This may have implications on the quality of care received by patients; however, it is not well understood how the characteristics of sending and receiving hospitals affect the likelihood of a transfer event. Our objective was to identify hospital characteristics associated with sending and receiving patients with stroke.
View Article and Find Full Text PDFAppl Netw Sci
November 2021
Unlabelled: Analysis of the structure of biological networks often uses statistical tests to establish the over-representation of motifs, which are thought to be important building blocks of such networks, related to their biological functions. However, there is disagreement as to the statistical significance of these motifs, and there are potential problems with standard methods for estimating this significance. Exponential random graph models (ERGMs) are a class of statistical model that can overcome some of the shortcomings of commonly used methods for testing the statistical significance of motifs.
View Article and Find Full Text PDFExponential random graph models (ERGMs) are widely used for modeling social networks observed at one point in time. However the computational difficulty of ERGM parameter estimation has limited the practical application of this class of models to relatively small networks, up to a few thousand nodes at most, with usually only a few hundred nodes or fewer. In the case of undirected networks, snowball sampling can be used to find ERGM parameter estimates of larger networks via network samples, and recently published improvements in ERGM network distribution sampling and ERGM estimation algorithms have allowed ERGM parameter estimates of undirected networks with over one hundred thousand nodes to be made.
View Article and Find Full Text PDFA major line of contemporary research on complex networks is based on the development of statistical models that specify the local motifs associated with macro-structural properties observed in actual networks. This statistical approach becomes increasingly problematic as network size increases. In the context of current research on efficient estimation of models for large network data sets, we propose a fast algorithm for maximum likelihood estimation (MLE) that affords a significant increase in the size of networks amenable to direct empirical analysis.
View Article and Find Full Text PDFThe existence of a shared classification system is essential to knowledge production, transfer, and sharing. Studies of knowledge classification, however, rarely consider the fact that knowledge categories exist within hierarchical information systems designed to facilitate knowledge search and discovery. This neglect is problematic whenever information about categorical membership is itself used to evaluate the quality of the items that the category contains.
View Article and Find Full Text PDFPrevious research on interaction behavior among organizations (resource exchange, collaboration, communication) has typically aggregated those behaviors over time as a network of organizational relationships. The authors instead study structural-temporal patterns in organizational exchange, focusing on the dynamics of reciprocation. Applying this lens to a community of Italian hospitals during 2003-7, the authors observe two mechanisms of interorganizational reciprocation: organizational and resource .
View Article and Find Full Text PDFUsing original data that we have collected on referral relations between 110 hospitals serving a large regional community, we show how recently derived Bayesian exponential random graph models may be adopted to illuminate core empirical issues in research on relational coordination among healthcare organisations. We show how a rigorous Bayesian computation approach supports a fully probabilistic analytical framework that alleviates well-known problems in the estimation of model parameters of exponential random graph models. We also show how the main structural features of interhospital patient referral networks that prior studies have described can be reproduced with accuracy by specifying the system of local dependencies that produce - but at the same time are induced by - decentralised collaborative arrangements between hospitals.
View Article and Find Full Text PDFThe main objective of this paper is to introduce and illustrate relational event models, a new class of statistical models for the analysis of time-stamped data with complex temporal and relational dependencies. We outline the main differences between recently proposed relational event models and more conventional network models based on the graph-theoretic formalism typically adopted in empirical studies of social networks. Our main contribution involves the definition and implementation of a marked point process extension of currently available models.
View Article and Find Full Text PDFWikipedia articles are written by teams of independent volunteers in the absence of formal hierarchical organizational structures. How is coordination achieved under such conditions of extreme decentralization? Building on studies on the organization of dominance relations in animal and human societies, we theorize that coordination in Wikipedia is made possible by an emergent hierarchical order sustained by self-organizing sequences of text editing events. We propose a new method to turn the editing history of Wikipedia pages into an evolving multiplex network resulting from three types of interaction events: dyadic undo, dyadic redo, and third-party based edit events.
View Article and Find Full Text PDFObjectives: We examine the dynamics of patient-sharing relations within an Italian regional community of 35 hospitals serving approximately 1,300,000 people. We test whether interorganizational relations provide individual patients access to higher quality providers of care.
Research Design And Methods: We reconstruct the complete temporal sequence of the 3461 consecutive interhospital patient-sharing events observed between each pair of hospitals in the community during 2005-2008.
We propose a new stochastic actor-oriented model for the co-evolution of two-mode and one-mode networks. The model posits that activities of a set of actors, represented in the two-mode network, co-evolve with exchanges and interactions between the actors, as represented in the one-mode network. The model assumes that the actors, not the activities, have agency.
View Article and Find Full Text PDFStudies of peer effects in educational settings confront two main problems. The first is the presence of endogenous sorting which confounds the effects of social influence and social selection on individual attainment. The second is how to account for the local network dependencies through which peer effects influence individual behavior.
View Article and Find Full Text PDF