Pursuing an established research interest in our group, we built two models for synthetic HDL containing the natural cysteine mutants of apolipoprotein A-I, apolipoprotein A-I Milano (apoA-IM) and apolipoprotein A-I Paris (apoA-IP), both in their homodimeric form. Data on the structural and dynamic properties of such s-HDL are an essential preliminary step for the understanding of the biological activity of the two mutants. Furthermore, comparison between apoA-IM and apoA-IP allows evaluating the effects of the same mutation in a different position in the primary structure and to directly compare our findings with previously published models.
View Article and Find Full Text PDFHigh-density lipoproteins (HDL) play a major role in the reverse transport of cholesterol and have antiatherogenic activities. Their major protein component is apolipoprotein (apo) A-I. While apoA-I amphipathic alpha-helix based secondary structure has been extensively investigated, for its lipid-bound tertiary structure only theoretical models have been proposed.
View Article and Find Full Text PDFChicken liver bile acid binding protein (cL-BABP) crystallizes with water molecules in its binding site. To obtain insights on the role of internal water, we performed two 100 ns molecular dynamics (MD) simulations in explicit solvent for cL-BABP, as apo form and as a complex with two molecules of cholic acid, and analyzed in detail the dynamics properties of all water molecules. The diffusion coefficients of the more persistent internal water molecules are significantly different from the bulk, but similar between the two protein forms.
View Article and Find Full Text PDFThe correlation between protein motions and function is a central problem in protein science. Several studies have demonstrated that ligand binding and protein dynamics are strongly correlated in intracellular lipid binding proteins (iLBPs), in which the high degree of flexibility, principally occurring at the level of helix-II, CD, and EF loops (the so-called portal area), is significantly reduced upon ligand binding. We have recently investigated by NMR the dynamic properties of a member of the iLBP family, chicken liver bile acid binding protein (cL-BABP), in its apo and holo form, as a complex with two bile salts molecules.
View Article and Find Full Text PDFCorrect folding is critical for the biological activities of proteins. As a contribution to a better understanding of the protein (un)folding problem, we studied the effect of temperature and of urea on peptostreptococcal Protein L destructuration. We performed standard molecular dynamics simulations at 300 K, 350 K, 400 K, and 480 K, both in 10 M urea and in water.
View Article and Find Full Text PDFExtending a previous investigation, the ability of binding to the model calycin beta-lactoglobulin (BLG) was evaluated both in silico and in vitro for several fluorine-containing (semi-)synthetic molecules of pharmacological and pharmaceutical interest (antibiotics, vastatins, steroid drugs). Simulation procedures included molecular docking according to a Montecarlo-simulated annealing protocol and molecular dynamics; heteronuclear NMR and denaturant gradient gel electrophoresis were the selected experimental techniques. For the tested drugs, ranking of the binding affinity was consistently assessed by computation and by experiment.
View Article and Find Full Text PDFWe describe some simple changes to the geometry of the IPG strips that make them suitable to the loading of very large sample volumes and of high-salt solutions. Of special relevance is the possibility of using strips with immobilized plateau(s) to either side of the gradient, or to both, also in connection with in-gel rehydration protocols and focusing in stock trays. The only requirement to achieve this is to leave the all-ready-made attitude and go back to custom polymerization of the IPGs in one's laboratory.
View Article and Find Full Text PDFIn this study, we propose a structure for the heterodimer between apolipoprotein A-I(Milano) and apolipoprotein A-II (apoA-I(M)-apoA-II) in a synthetic high-density lipoprotein (HDL) containing L-alpha-palmitoyloleoyl phosphatidylcholine. We applied bioinformatics/computational tools and procedures, such as molecular docking, molecular and essential dynamics, starting from published crystal structures for apolipoprotein A-I and apolipoprotein A-II. Structural and energetic analyses onto the simulated system showed that the molecular dynamics produced a stabilized synthetic HDL.
View Article and Find Full Text PDF