Among semiconductor metal oxides, that are an important class of sensing materials, titanium dioxide (TiO) thin films are widely employed as sensors because of their high chemical and mechanical stability in harsh environments, non-toxicity, eco-compatibility, and photocatalytic properties. TiO-based chemical oxygen demand (COD) sensors exploit the photocatalytic properties of TiO in inducing the oxidation of organic compounds to CO. In this work, we discuss nanostructured TiO thin films grown via low-pressure metal organic chemical vapor deposition (MOCVD) on metallic AISI 316 mesh.
View Article and Find Full Text PDFNon-thermal plasma technology is increasingly being applied in the plant biology field. Despite the variety of beneficial effects of plasma-activated water (PAW) on plants, information about the mechanisms of PAW sensing by plants is still limited. In this study, in order to link PAW perception to the positive downstream responses of plants, transgenic seedlings expressing the Ca-sensitive photoprotein aequorin in the cytosol were challenged with water activated by low-power non-thermal plasma generated by a dielectric barrier discharge (DBD) source.
View Article and Find Full Text PDFHeterogeneous photocatalysis is considered as one of the most appealing options for the treatment of organic pollutants in water. However, its definitive translation into industrial practice is still very limited because of both the complexity of large-scale production of catalysts and the problems involved in handling the powder-based photocatalysts in the industrial plants. Here, we demonstrate that the MOCVD approach can be successfully used to prepare large-scale supported catalysts with a good photocatalytic activity towards dye degradation.
View Article and Find Full Text PDFIncreasing evidence indicates that water activated by plasma discharge, termed as plasma-activated water (PAW), can promote plant growth and enhance plant defence responses. Nevertheless, the signalling pathways activated in plants in response to PAW are still largely unknown. In this work, we analysed the potential involvement of calcium as an intracellular messenger in the transduction of PAW by plants.
View Article and Find Full Text PDFAn assessment study involving the use of the transglutaminase (TGase) conjugation method and the nitride-technetium-99m labelling on a bis(thiosemicarbazone) (BTS) bifunctional chelating agent is presented. The previously described chelator diacetyl-2-(N-methyl-3-thiosemicarbazone)-3-(N-amino-3-thiosemicarbazone), HATSM/A, has been functionalized with 6-aminohexanoic acid (ε-Ahx) to generate the bifunctional chelating agent diacetyl-2-(N-methyl-3-thiosemicarbazone)-3-[N-(amino)-(6-aminohexanoic acid)-3-thiosemicarbazone], HATSM/A-ε-Ahx (1), suitable for conjugation to glutamine (Gln) residues of bioactive molecules via TGase. The feasibility of the TGase reaction in the synthesis of a bioconjugate derivative was investigated using Substance P (SP) as model peptide.
View Article and Find Full Text PDF