Bromine in ice cores has been proposed as a qualitative sea ice proxy to produce sea ice reconstructions for the polar regions. Here we report the first statistical validation of this proxy with satellite sea ice observations by combining bromine enrichment (with respect to seawater, Br) records from three Greenlandic ice cores (SIGMA-A, NU and RECAP) with satellite sea ice imagery, over three decades. We find that during the 1984-2016 satellite-era, ice core Br values are significantly correlated with first-year sea ice formed in the Baffin Bay and Labrador Sea supporting that the gas-phase bromine enrichment processes, preferentially occurring over the sea ice surface, are the main driver for the Br signal in ice cores.
View Article and Find Full Text PDFSea ice decline in the North Atlantic and Nordic Seas has been proposed to contribute to the repeated abrupt atmospheric warmings recorded in Greenland ice cores during the last glacial period, known as Dansgaard-Oeschger (D-O) events. However, the understanding of how sea ice changes were coupled with abrupt climate changes during D-O events has remained incomplete due to a lack of suitable high-resolution sea ice proxy records from northwestern North Atlantic regions. Here, we present a subdecadal-scale bromine enrichment (Br) record from the NEEM ice core (Northwest Greenland) and sediment core biomarker records to reconstruct the variability of seasonal sea ice in the Baffin Bay and Labrador Sea over a suite of D-O events between 34 and 42 ka.
View Article and Find Full Text PDF