Publications by authors named "Alessandro Franchin"

Introduction: Direct oral anticoagulants (DOACs) are underused in the elderly, regardless the evidence in their favour in this population.

Methods: We prospectively enrolled anticoagulant-naïve patients aged ≥ 75 years who started treatment with DOACs for atrial fibrillation (AF) and stratified them in older adults (aged 75-84 years) and extremely older adults (≥ 85 years). Thrombotic and hemorrhagic events were evaluated for 12 months follow-up.

View Article and Find Full Text PDF
Article Synopsis
  • The study reveals high levels of hydrochloric acid (HCl) and halogens (Cl, Br, and BrCl) in an industrial plume near the Great Salt Lake, Utah, highlighting a significant environmental concern.
  • Complete oxygen depletion was linked to the production of halogen radicals, correlating with reported emissions from nearby facilities for chlorine and HCl, but bromine levels were estimated based on unreported inventory data.
  • A photochemical model demonstrated that bromine radicals were the primary cause of rapid oxygen depletion, and including halogen emissions in environmental models indicated a 10%-25% increase in particulate matter in the Great Salt Lake Basin, exacerbating air quality problems in the region.
View Article and Find Full Text PDF

Orthostatic hypotension (OH) and blood pressure circadian dysfunctions are common in older adults and may be related to aging-related autonomic nervous system deficits. This study aimed to evaluate the relationship between orthostatic and nocturnal blood pressure changes in geriatric outpatients. This cross-sectional study was carried out with 425 Italian individuals aged ≥65 years (mean age 75.

View Article and Find Full Text PDF
Article Synopsis
  • The Gaussian observational model for edge to center heterogeneity (GOMECH) is introduced as a new method for analyzing the horizontal chemical structure of smoke plumes.
  • GOMECH uses data from short-lived emissions and long-lived tracers like CO to quantify plume width and center, validated by studying OH and NO oxidation processes in smoke from the FIREX-AQ study.
  • Findings highlight that nitrous acid (HONO) and phenolic emissions are narrower than CO, indicating more losses at the plume edges, while NO production is concentrated at the plume center, with a significant connection between nitrocatechol aerosol and NO production confirmed by large eddy simulations.
View Article and Find Full Text PDF

Understanding the efficiency and variability of photochemical ozone (O) production from western wildfire plumes is important to accurately estimate their influence on North American air quality. A set of photochemical measurements were made from the NOAA Twin Otter research aircraft as a part of the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) experiment. We use a zero-dimensional (0-D) box model to investigate the chemistry driving O production in modeled plumes.

View Article and Find Full Text PDF

Background: The effect of dehydroepiandrosterone sulfate (DHEA-S) on fall risk in older age is still unclear, as is the effect of sex on any relationship between the two. Our aim was to evaluate the association between DHEA-S and the risk of falls and risk of recurrent falls in community-dwelling older men and women.

Methods: We included 1949 (781 M, 1168 F) older adults enrolled in the Progetto Veneto Anziani study.

View Article and Find Full Text PDF

Binary nucleation of sulphuric acid-water particles is expected to be an important process in the free troposphere at low temperatures. SAWNUC (Sulphuric Acid Water Nucleation) is a model of binary nucleation that is based on laboratory measurements of the binding energies of sulphuric acid and water in charged and neutral clusters. Predictions of SAWNUC are compared for the first time comprehensively with experimental binary nucleation data from the CLOUD chamber at European Organization for Nuclear Research.

View Article and Find Full Text PDF

Backgrounds: In non-critical hospitalized patients with diabetes mellitus, guidelines suggest subcutaneous insulin therapy with basal-bolus regimen, even in old and vulnerable inpatients.

Aim: To evaluate safety, efficacy, and benefit on clinical management of the GesTIO protocol, a set of subcutaneous insulin administration rules, in old and vulnerable non-ICU inpatients.

Methods: Retrospective, observational study.

View Article and Find Full Text PDF

Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber.

View Article and Find Full Text PDF

Introduction: Little is known about the effects of atrial fibrillation (AF) on blood pressure (BP) levels in hypertensive patients. Some studies suggest a role for rhythm control in managing such patients' BP, but the improvement observed in cardiac performance after restoring sinus rhythm (SR) may coincide with an increase in BP. The aim of this study was to apply ambulatory BP monitoring to analyze BP changes in hypertensive patients after electrical cardioversion for persistent AF.

View Article and Find Full Text PDF
Article Synopsis
  • * Model simulations indicate that these biogenic particles significantly increased cloud condensation nuclei (CCN) concentrations in the preindustrial era, leading to a greater cooling effect on the climate due to higher cloud albedo.
  • * The research suggests that the overall impact of human-made aerosols on climate may be less than previously thought because of the substantial role of natural processes, highlighting the need for more research on these natural aerosol formation mechanisms.
View Article and Find Full Text PDF

Homogeneous nucleation and subsequent cluster growth leads to the formation of new aerosol particles in the atmosphere. The nucleation of sulfuric acid and organic vapours is thought to be responsible for the formation of new particles over continents, whereas iodine oxide vapours have been implicated in particle formation over coastal regions. The molecular clustering pathways that are involved in atmospheric particle formation have been elucidated in controlled laboratory studies of chemically simple systems, but direct molecular-level observations of nucleation in atmospheric field conditions that involve sulfuric acid, organic or iodine oxide vapours have yet to be reported.

View Article and Find Full Text PDF

About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across.

View Article and Find Full Text PDF

Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role.

View Article and Find Full Text PDF

The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions.

View Article and Find Full Text PDF

The reliability of automated oscillometric blood pressure (BP) monitors in atrial fibrillation (AF) has been poorly investigated, only comparing different patients with AF and sinus rhythm (SR), and is a method influenced by individual characteristics. This study compared the reliability of the oscillometric device A&D TM-2430 (A&D Company, Tokyo, Japan) with that of a mercury sphygmomanometer in AF patients whose SR was restored after electric cardioversion (ECV). Three consecutive BP measurements were obtained on the day before and about 30 days after ECV in stable treatment conditions.

View Article and Find Full Text PDF

We investigated the nucleation of sulfuric acid together with two bases (ammonia and dimethylamine), at the CLOUD chamber at CERN. The chemical composition of positive, negative, and neutral clusters was studied using three Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometers: two were operated in positive and negative mode to detect the chamber ions, while the third was equipped with a nitrate ion chemical ionization source allowing detection of neutral clusters. Taking into account the possible fragmentation that can happen during the charging of the ions or within the first stage of the mass spectrometer, the cluster formation proceeded via essentially one-to-one acid-base addition for all of the clusters, independent of the type of the base.

View Article and Find Full Text PDF

For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions.

View Article and Find Full Text PDF

Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere.

View Article and Find Full Text PDF

Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research.

View Article and Find Full Text PDF
Article Synopsis
  • Nucleation of aerosol particles from trace atmospheric vapors contributes significantly to cloud condensation nuclei, potentially cooling the climate by enhancing cloud properties.
  • Recent studies indicate that traditional explanations, like sulfuric acid and ammonia, are insufficient to explain observed particle formation rates, prompting exploration of amines.
  • Using the CLOUD chamber at CERN, researchers found that dimethylamine vastly improves particle formation rates through a stabilization mechanism, suggesting a need to reevaluate how human activities affect aerosol formation in the atmosphere.
View Article and Find Full Text PDF

The aim of this study was to test whether ambulatory blood pressure monitoring (ABPM) in elderly patients with atrial fibrillation (AF) is as feasible and reliable as ABPM is in patients with normal sinus rhythm (SR). Studies of ABPM in the elderly remain limited, and the use of this method in patients with AF remains controversial. The Italian SIIA 2008 guidelines consider ABPM 'absolutely contraindicated' for AF patients.

View Article and Find Full Text PDF

Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub-2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter.

View Article and Find Full Text PDF

Formation of secondary atmospheric aerosol particles starts with gas phase molecules forming small molecular clusters. High-resolution mass spectrometry enables the detection and chemical characterization of electrically charged clusters from the molecular scale upward, whereas the experimental detection of electrically neutral clusters, especially as a chemical composition measurement, down to 1 nm in diameter and beyond still remains challenging. In this work we simulated a set of both electrically neutral and charged small molecular clusters, consisting of sulfuric acid and ammonia molecules, with a dynamic collision and evaporation model.

View Article and Find Full Text PDF

Hemochromatosis is associated with increased risk of hematological neoplasias, but studies showing hemochromatosis gene mutations in myelodysplastic syndrome (MDS) are scanty, particularly in the elderly. The onset of MDS in hemochromatosis usually occurs between 60 and 70 years of age, while cases with advanced age are very rare. We report a case of a 78- year-old man with hemochromatosis who developed refractory anemia with excess of blasts.

View Article and Find Full Text PDF