We present a novel, to the best of our knowledge, and straightforward approach for the spatio-spectral characterization of ultrashort pulses. This minimally intrusive method relies on placing a mask with specially arranged pinholes in the beam path before the focusing optic and retrieving the spectrally resolved laser wavefront from the speckle pattern produced at focus. We test the efficacy of this new method by accurately retrieving chromatic aberrations, such as pulse-front tilt (PFT), pulse-front curvature (PFC), and higher-order aberrations introduced by a spherical lens.
View Article and Find Full Text PDFBackground: Ultra-high dose-rate (UHDR) irradiations (>40 Gy/s) have recently garnered interest in radiotherapy (RT) as they can trigger the so-called "FLASH" effect, namely a higher tolerance of normal tissues in comparison with conventional dose rates when a sufficiently high dose is delivered to the tissue. To transfer this to clinical RT treatments, adapted methods and practical tools for online dosimetry need to be developed. Ionization chambers remain the gold standards in RT but the charge recombination effects may be very significant at such high dose rates, limiting the use of some of these dosimeters.
View Article and Find Full Text PDF