Unfortunately, we encountered an error with units of measure in reporting data in the last two columns of Table 3 (on page 28814 in the printed version), so that those data should be changed as reported in the following corrected version of the Table.
View Article and Find Full Text PDFThe chemical composition of atmospheric particulate (PM10) in the Friuli Venezia Giulia (FVG) region (NE Italy) has been characterized for the first time with the help of exploratory data analysis (EDA) techniques (uni-, bi-, and multivariated, i.e., principal components analysis), molecular and elemental diagnostic ratios, and seasonal trends.
View Article and Find Full Text PDFThe ligand substitution reactions of complexes of the type trans-[(R)Co(Chel)S](+/0) with L, where chel = (DO)(DOH)pn = 2,2'-(1,3-diaminopropanebis(2-methyl-3-butanone)oxime), R = CH(3), L = imidazole, pyrazole, 1,2,4-triazole and 1-methylimidazole, and S = water and MeOH, and chel = (Hdmg)(2) = bis(dimethylglyoximate), R = CH(2)Cl, CH(2)Br, and CH(2)I, L = thiourea and pyridine, and S = water, were studied in detail as a function of temperature and pressure. The reported activation parameters (DeltaH, DeltaS and DeltaV) support the operation of a dissociative interchange (I(d)) mechanism. Complexes of the type trans-[RCo(Hdmg)(2)L] (R = CH(2)Cl, CH(2)Br, and CH(2)I; L = H(2)O and Py) were fully optimized at the B3LYP/LANL2DZp level, and the structural data support the mechanistic assignment based on the reported activation parameters.
View Article and Find Full Text PDFThe kinetics of axial water substitution by azoles (pyrazole and 1,2,4-triazole) in three different cobaloximes, viz.trans-[Co(Hdmg)(2)(R)H(2)O] where Hdmg = dimethylglyoximate, R = PhCH(2), Et and CF(3)CH(2), were studied as a function of azole concentration, temperature and pressure in aqueous solution. The second order rate constants for the substitution of water in trans-[Co(Hdmg)(2)(R)H(2)O] for R = Et at pH 6.
View Article and Find Full Text PDFThe kinetics of axial water substitution by cysteine in six different cobaloximes, viz.trans-RCo(Hdmg)(2)H(2)O, where Hdmg = dimethylglyoximate, R = cyclo-C(5)H(9) (c-P), CH(3)CH(2) (Et), CH(3) (Me), C(6)H(5)CH(2) (Bz), C(6)H(5) (Ph) and CF(3)CH(2), were studied as a function of cysteine concentration, temperature and pressure. It was found that cysteine substitutes the coordinated H(2)O molecule trans to the alkyl group with second order rate constants that follow the order of reactivity: c-P > Et > Bz > Me > Ph > CF(3)CH(2).
View Article and Find Full Text PDFThe complex mer-[Co(III)(L(1)Npy)(2)](+) (1') where the L(1)Npy(-) is the tridentate 3-[(2-pyridyl)methylimino]butan-2-one oximate ligand, gives alkyl-cobalt derivatives after reduction with NaBH(4)/Pd(2+) to the Co(I) and alkylation. The formation of the cobalt-carbon bond is accompanied by the reduction to the amino form of one or both imino ligands (depending on the experimental conditions) initially present in 1'. In one series of experiments, complexes of the type fac-[RCo(III)(L(1)Npy)(H-L(1)NHpy)](+) (R = Me, i-Pr, CH(2)Cl, CH(2)Br, CH(2)CF(3), and Bz) were obtained, in which only one of the two ligands was reduced to the amino form (H-L(1)NHpy).
View Article and Find Full Text PDF