Publications by authors named "Alessandro Cultrera"

Self-organizing memristive nanowire connectomes have been exploited for physical (in materia) implementation of brain-inspired computing paradigms. Despite having been shown that the emergent behavior relies on weight plasticity at single junction/synapse level and on wiring plasticity involving topological changes, a shift to multiterminal paradigms is needed to unveil dynamics at the network level. Here, we report on tomographical evidence of memory engrams (or memory traces) in nanowire connectomes, i.

View Article and Find Full Text PDF

The knowledge of the spatial distribution of the electrical conductivity of metallic nanowire networks (NWN) is important for tailoring the performance in applications. This work focuses on Electrical Resistance Tomography (ERT), a technique that maps the electrical conductivity of a sample from several resistance measurements performed on its border. We show that ERT can be successfully employed for NWN characterisation if a dedicated measurement protocol is employed.

View Article and Find Full Text PDF

Graphene has become the focus of extensive research efforts and it can now be produced in wafer-scale. For the development of next generation graphene-based electronic components, electrical characterization of graphene is imperative and requires the measurement of work function, sheet resistance, carrier concentration and mobility in both macro-, micro- and nano-scale. Moreover, commercial applications of graphene require fast and large-area mapping of electrical properties, rather than obtaining a single point value, which should be ideally achieved by a contactless measurement technique.

View Article and Find Full Text PDF

Electronic applications of large-area graphene films require rapid and accurate methods to map their electrical properties. Here we present the first electrical resistance tomography (ERT) measurements on large-area graphene samples, obtained with a dedicated measurement setup and reconstruction software. The outcome of an ERT measurement is a map of the graphene electrical conductivity.

View Article and Find Full Text PDF