Publications by authors named "Alessandro Culotti"

Article Synopsis
  • The NHLBI BioData CatalystⓇ (BDC) is a special online place where researchers can easily find and work with large sets of health data.
  • It offers tools and features to help scientists study health problems related to the heart, lungs, blood, and sleep, making research faster and more effective.
  • BDC also helped speed up research on COVID-19 and supports a program to help new scientists make important discoveries.
View Article and Find Full Text PDF

The NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL; https://anvilproject.org) was developed to address a widespread community need for a unified computing environment for genomics data storage, management, and analysis. In this perspective, we present AnVIL, describe its ecosystem and interoperability with other platforms, and highlight how this platform and associated initiatives contribute to improved genomic data sharing efforts.

View Article and Find Full Text PDF

Intensively managed land increases the rate of nutrient and particle transport within a basin, but the impact of these changes on microbial community assembly patterns at the basin scale is not yet understood. The objective of this study was to investigate how landscape connectivity and dispersal impacts microbial diversity in an agricultural-dominated watershed. We characterized soil, sediment and water microbial communities along the Upper Sangamon River basin in Illinois-a 3600 km2 watershed strongly influenced by human activity, especially landscape modification and extensive fertilization for agriculture.

View Article and Find Full Text PDF

We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P.

View Article and Find Full Text PDF

Biofilms are surface-attached microbial communities that have complex structures and produce significant spatial heterogeneities. Biofilm development is strongly regulated by the surrounding flow and nutritional environment. Biofilm growth also increases the heterogeneity of the local microenvironment by generating complex flow fields and solute transport patterns.

View Article and Find Full Text PDF

Biofilms have been implicated as an important reservoir for pathogens and commensal enteric bacteria such as Escherichia coli in natural and engineered water systems. However, the processes that regulate the survival of E. coli in aquatic biofilms have not been thoroughly studied.

View Article and Find Full Text PDF

Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS.

View Article and Find Full Text PDF