Publications by authors named "Alessandro Crnjar"

Poly(ethylene terephthalate) (PET) is the most common polyester plastic in the packaging industry and a major source of environmental pollution due to its single use. Several enzymes, termed PET hydrolases, have been found to hydrolyze this polymer at different temperatures, with the enzyme from (PETase) having optimal catalytic activity at 30-35 °C. Crystal structures of PETase have revealed that the side chain of a conserved tryptophan residue within an active site loop (W185) shifts between three conformations to enable substrate binding and product release.

View Article and Find Full Text PDF

Tree ring features are affected by environmental factors and therefore are the basis for dendrochronological studies to reconstruct past environmental conditions. Oak wood often provides the data for these studies because of the durability of oak heartwood and hence the availability of samples spanning long time periods of the distant past. Wood formation is regulated in part by epigenetic mechanisms such as DNA methylation.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels (pLGICs) mediate fast synaptic transmission and are crucial drug targets. Their gating mechanism is triggered by ligand binding in the extracellular domain that culminates in the opening of a hydrophobic gate in the transmembrane domain. This domain is made of four α-helices (M1 to M4).

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels (pLGICs), embedded in the lipid membranes of nerve cells, mediate fast synaptic transmission and are major pharmaceutical targets. Because of their complexity and the limited knowledge of their structure, their working mechanisms have still to be fully unraveled at the molecular level. Over the past few years, evidence that the lipid membrane may modulate the function of membrane proteins, including pLGICs, has emerged.

View Article and Find Full Text PDF

Förster resonance energy transfer (FRET) is a powerful tool to investigate the interaction between proteins in living cells. Fluorescence proteins, such as the green fluorescent protein (GFP) and its derivatives, are coexpressed in cells linked to proteins of interest. Time-resolved fluorescence anisotropy is a popular tool to study homo-FRET of fluorescent proteins as an indicator of dimerization, in which its signature consists of a very short component at the beginning of the anisotropy decay.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels (pLGICs) are an important class of widely expressed membrane neuroreceptors, which play a crucial role in fast synaptic communications and are involved in several neurological conditions. They are activated by the binding of neurotransmitters, which trigger the transmission of an electrical signal via facilitated ion flux. They can also be activated, inhibited or modulated by a number of drugs.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels (pLGICs) are important neuroreceptors, embedded in neuronal membranes, that mediate fast synaptic transmission. The molecular details of their working mechanisms have still to be fully unravelled due to their complexity and limited structural information available. Here we focus on a potential molecular switch in a prototypical pLGIC, the serotonin-activated 5-HT receptor, consisting of the trans- cis isomerization of a proline at the interface between the extracellular and transmembrane domain.

View Article and Find Full Text PDF