Publications by authors named "Alessandro Coda"

Alkyldihydroxyacetonephosphate is the building block for the biosynthesis of ether phospholipids, which are essential components of eukaryotic cell membranes and are involved in a variety of signaling processes. The metabolite is synthesized by alkyldihydroxyacetonephosphate synthase (ADPS), a peroxisomal flavoenzyme. Deficiency in ADPS activity causes rhizomelic chondrodysplasia punctata type 3, a very severe genetic disease.

View Article and Find Full Text PDF

Ether phospholipids are essential constituents of eukaryotic cell membranes. Rhizomelic chondrodysplasia punctata type 3 is a severe peroxisomal disorder caused by inborn deficiency of alkyldihydroxyacetonephosphate synthase (ADPS). The enzyme carries out the most characteristic step in ether phospholipid biosynthesis: formation of the ether bond.

View Article and Find Full Text PDF

Mycobacterium tuberculosis FprA is a NADPH-ferredoxin reductase, functionally and structurally similar to the mammalian adrenodoxin reductase. It is presumably involved in supplying electrons to one or more of the pathogen's cytochrome P450s through reduced ferredoxins. It has been proposed on the basis of crystallographic data (Bossi, R.

View Article and Find Full Text PDF

Glutamate synthase (GltS) is a complex iron-sulfur flavoprotein that catalyzes the reductive transfer of L-glutamine amide group to the C2 carbon of 2-oxoglutarate yielding two molecules of L-glutamate. Molecular dynamics calculations in explicit solvent were carried out to gain insight into the conformational flexibility of GltS and into the role played by the enzyme substrates in regulating the catalytic cycle. We have modelled the free (unliganded) form of Azospirillum brasilense GltS alpha subunit and the structure of the reduced enzyme in complex with the L-glutamine and 2-oxoglutarate substrates starting from the crystallographically determined coordinates of the GltS alpha subunit in complex with L-methionine sulphone and 2-oxoglutarate.

View Article and Find Full Text PDF

Cytokinins form a diverse class of compounds that are essential for plant growth. Cytokinin dehydrogenase has a major role in the control of the levels of these plant hormones by catalysing their irreversible oxidation. The crystal structure of Zea mays cytokinin dehydrogenase displays the same two-domain topology of the flavoenzymes of the vanillyl-alcohol oxidase family but its active site cannot be related to that of any other family member.

View Article and Find Full Text PDF

Glutamate synthases (GltS) are crucial enzymes in ammonia assimilation in plants and bacteria, where they catalyze the formation of two molecules of L-glutamate from L-glutamine and 2-oxoglutarate. The plant-type ferredoxin-dependent GltS and the functionally homologous alpha subunit of the bacterial NADPH-dependent GltS are complex four-domain monomeric enzymes of 140-165 kDa belonging to the NH(2)-terminal nucleophile family of amidotransferases. The enzymes function through the channeling of ammonia from the N-terminal amidotransferase domain to the FMN-binding domain.

View Article and Find Full Text PDF