Extracellular vesicles (EV) have emerged as promising cell-free therapeutics in regenerative medicine. However, translating primary cell line-derived EV to clinical applications requires large-scale manufacturing and several challenges, such as replicative senescence, donor heterogeneity, and genetic instability. To address these limitations, we used a reprogramming approach to generate human induced pluripotent stem cells (hiPSC) from the young source of cord blood mesenchymal stem/stromal cells (CBMSC).
View Article and Find Full Text PDFHuman organoids have been proposed to be powerful tools mimicking the physiopathological processes of the organs of origin. Recently, human pancreatic organoids (hPOs) have gained increasing attention due to potential theragnostic and regenerative medicine applications. However, the cellular components of hPOs have not been defined precisely.
View Article and Find Full Text PDFBackground & Aims: The loss of ovarian functions defining menopause leads to profound metabolic changes and heightens the risk of developing metabolic dysfunction-associated steatotic liver disease (MASLD). Although estrogens primarily act on the female liver through estrogen receptor alpha (ERα), the specific contribution of impaired ERα signaling in triggering MASLD after menopause remains unclear.
Methods: To address this gap in knowledge, we compared the liver transcriptomes of sham-operated (SHAM) and ovariectomized (OVX) control and liver ERα knockout (LERKO) female mice by performing RNA-Seq analysis.
Metabolic dysfunction-associated steatotic liver disease (MASLD, previously termed NAFLD, nonalcoholic fatty liver disease) is a complex multifactorial disease showing generally higher prevalence and severity in men than in women. With respect to women, men are also more prone to develop metabolic dysfunction-associated steatohepatitis, fibrosis and liver-related complications. Several genetic, hormonal, environmental and lifestyle factors may contribute to sex differences in MASLD development, progression and outcomes.
View Article and Find Full Text PDFMetabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver condition. MASLD is a sexually dimorphic condition, with its development and progression influenced by sex chromosomes and hormones. Estrogens typically protect against, whereas androgens promote, MASLD.
View Article and Find Full Text PDFBackground & Aims: Non-alcoholic steatohepatitis (NASH)-induced liver fibrosis is emerging as the most common cause of liver disease. For evaluation of therapies, there is a pressing need to identify non-invasive, mechanism-based biomarkers. A pro-fibrotic process relevant to human NASH involves a pathway in which a transcriptional regulator called TAZ (WWTR1) in hepatocytes induces the secretion of pro-fibrotic Indian hedgehog (IHH).
View Article and Find Full Text PDFTomographic quantitative phase imaging (QPI) lacks an absolute refractive index value baseline, which poses a problem when large dense objects extending over multiple fields of view are measured volume by volume and stitched together. Some of the measurements lack the natural baseline value that is provided by the mounting medium with a known refractive index. In this work, we discuss the problem of the refractive index (RI) baseline of individual reconstructed volumes that are deprived of access to mounting medium due to the extent of the object.
View Article and Find Full Text PDFTumors can survive environmental and metabolic stress by triggering homeostatic responses that re-establish the pre-stress status and permit them to grow and thrive. The endoplasmic reticulum (ER) is the organelle where proteins undergo post-translational modifications and are folded and exported to the secretory pathway. Its environment and activity are therefore fundamental for proteostasis, i.
View Article and Find Full Text PDFN-glycosylation and disulfide bond formation are two essential steps in protein folding that occur in the endoplasmic reticulum (ER) and reciprocally influence each other. Here, to analyze crosstalk between N-glycosylation and oxidation, we investigated how the protein disulfide oxidase ERO1-alpha affects glycosylation of the angiogenic VEGF, a key regulator of vascular homeostasis. ERO1 deficiency, while retarding disulfide bond formation in VEGF, increased utilization of its single N-glycosylation sequon, which lies close to an intra-polypeptide disulfide bridge, and concomitantly slowed its secretion.
View Article and Find Full Text PDFGiven the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.
View Article and Find Full Text PDFBackground & Aims: Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver disorders and has a strong heritable component. The aim of this study was to identify new loci that contribute to severe NAFLD by examining rare variants.
Methods: We performed whole-exome sequencing in individuals with NAFLD and advanced fibrosis or hepatocellular carcinoma (n = 301) and examined the enrichment of likely pathogenic rare variants vs.
Three-dimensional (3D) structured organoids are the most advanced in vitro models for studying human health effects, but their application to evaluate the biological effects associated with microplastic exposure was neglected until now. Fibers from synthetic clothes and fabrics are a major source of airborne microplastics, and their release from dryer machines is poorly understood. We quantified and characterized the microplastic fibers (MPFs) released in the exhaust filter of a household dryer and tested their effects on airway organoids (1, 10, and 50 µg mL) by optical microscopy, scanning electron microscopy (SEM), confocal microscopy and quantitative reverse transcription-polymerase chain reaction (qRT-PCR).
View Article and Find Full Text PDFExpert Opin Ther Targets
December 2021
Introduction: An interaction between metabolic triggers and inherited predisposition underpins the development and progression of non alcoholic fatty liver disease (NAFLD) and fatty liver disease in general. Among the specific NAFLD risk variants, rs738409 C>G, encoding for the p.I148M protein variant, accounts for the largest fraction of liver disease heritability and is being intensively scrutinized.
View Article and Find Full Text PDFIn the last few years, there has been a considerable increase in the use of organoids, which is a new three-dimensional culture technology applied in scientific research. The main reasons for their extensive use are their plasticity and multiple applications, including in regenerative medicine and the screening of new drugs. The aim of this study was to better understand these structures by focusing on the choice of the best housekeeping gene (HKG) to perform accurate molecular analysis on such a heterogeneous system.
View Article and Find Full Text PDF