The African turquoise killifish Nothobranchius furzeri represents an emerging short-lived model for aging research. Captive strains of this species are characterized by large differences in lifespan. To identify the gene expression correlates of this lifespan differences, we analyzed a public transcriptomic dataset consisting of four different tissues in addition to embryos.
View Article and Find Full Text PDFAging and neurodegeneration entail diverse cellular and molecular hallmarks. Here, we studied the effects of aging on the transcriptome, translatome, and multiple layers of the proteome in the brain of a short-lived killifish. We reveal that aging causes widespread reduction of proteins enriched in basic amino acids that is independent of mRNA regulation, and it is not due to impaired proteasome activity.
View Article and Find Full Text PDFNeurotrophins (NTFs) are structurally related neurotrophic factors essential for differentiation, survival, neurite outgrowth, and the plasticity of neurons. Abnormalities associated with neurotrophin-signaling (NTF-signaling) were associated with neuropathies, neurodegenerative disorders, and age-associated cognitive decline. Among the neurotrophins, brain-derived neurotrophic factor (BDNF) has the highest expression and is expressed in mammals by specific cells throughout the brain, with particularly high expression in the hippocampus and cerebral cortex.
View Article and Find Full Text PDFFront Cell Dev Biol
March 2023
Deciphering the biological and physical requirements for the outset of multicellularity is limited to few experimental models. The early embryonic development of annual killifish represents an almost unique opportunity to investigate cellular aggregation in a vertebrate model. As an adaptation to seasonal drought, annual killifish employs a unique developmental pattern in which embryogenesis occurs only after undifferentiated embryonic cells have completed epiboly and dispersed in low density on the egg surface.
View Article and Find Full Text PDFTissue clearing techniques for three-dimensional reconstruction and imaging of entire organs and thick samples have become a popular and broadly used methodology, leading to the development of numerous protocols. Due to the complex cellular architecture of the brain and the wide spatial range of the connections that neurons may display, having the possibility to stain, image, and reconstruct neurons and/or neuronal nuclei in their entire extent can be crucial. However, this is hard to accomplish due to the natural opacity of the brain and the general thickness of the sample, posing a barrier to both imaging and antibody penetration.
View Article and Find Full Text PDFProtein aggregation is a hallmark of many age-related pathologies and, in particular, of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. The teleost shows the shortest median life span among all vertebrate animal models and has recently gained popularity as a convenient model for experimental approaches to aging. Immunofluorescence staining is the primary technique used to visualize the distribution of proteins in fixed cells and tissues and it has proven to be a powerful tool to study aggregates and proteins involved in neurodegenerative diseases.
View Article and Find Full Text PDFAdult neurogenesis is defined as the ability of specialized cells in the postnatal brain to produce new functional neurons and to integrate them into the already-established neuronal network. This phenomenon is common in all vertebrates and has been found to be extremely relevant for numerous processes, such as long-term memory, learning, and anxiety responses, and it has been also found to be involved in neurodegenerative and psychiatric disorders. Adult neurogenesis has been studied extensively in many vertebrate models, from fish to human, and observed also in the more basal cartilaginous fish, such as the lesser-spotted dogfish, but a detailed description of neurogenic niches in this animal is, to date, limited to the telencephalic areas.
View Article and Find Full Text PDFBackground: Physical activity has been recently shown to enhance adult visual cortical plasticity, both in human subjects and animal models. While physical activity activates mitochondrial oxidative metabolism leading to a transient production of reactive oxygen species, it remains unknown whether this process is involved in the plasticizing effects elicited at the visual cortical level.
Results: Here, we investigated whether counteracting oxidative stress through a dietary intervention with antioxidants (vitamins E and C) interferes with the impact of physical exercise on visual cortex plasticity in adult rats.
A vast body of studies is available that describe age-dependent gene expression in relation to aging in a number of different model species. These data were obtained from animals kept in conditions with reduced environmental challenges, abundant food, and deprivation of natural sensory stimulation. Here, we compared wild- and captive aging in the short-lived turquoise killifish (Nothobranchius furzeri).
View Article and Find Full Text PDFImmunofluorescence is a widely used technique to visualize the localization of proteins of interest. Nucleoside analogs, such as 5-ethynyl-2'-deoxyuridine (EdU), are incorporated into newly synthesized DNA and enable permanent labeling of newly divided cells. Both these techniques can be applied to long-term organotypic culture of in a fashion similar to that already described for tissue sections.
View Article and Find Full Text PDFCold Spring Harb Protoc
December 2022
Organotypic culture is a well-established method for culturing ex vivo tissue samples. The advantages of culturing tissue slices for prolonged time periods ex vivo are numerous and consist primarily of the maintenance of the overall in vivo architecture of the isolated sample, the lack of the ematoencephalic barrier, and the ease of pharmacological treatments and interventions that can be conducted under controlled conditions as in in vitro systems such as cell cultures. Given the extremely short life span of and the emergence of aging signs only after a few months of life, it is of particular interest to establish this protocol for as a potential method to study brain aging ex vivo.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by phosphorylation and aggregation of the protein α-Synuclein and ensuing neuronal death progressing from the noradrenergic locus coeruleus to midbrain dopaminergic neurons. In 2019, Matsui and colleagues reported a spontaneous age-dependent degeneration of dopaminergic neurons and an even greater neurodegeneration of the noradrenergic neurons in the short-lived killifish Nothobranchius furzeri. Given the great possible relevance of a spontaneous model for PD, we assessed neurodegeneration of noradrenergic and dopaminergic neurons in two further laboratory strains of N.
View Article and Find Full Text PDFIntersexual differences in life span (age at death) and aging (increase in mortality risk associated with functional deterioration) are widespread among animals, from nematodes to humans. Males often live shorter than females, but there is substantial unexplained variation among species and populations. Despite extensive research, it is poorly understood how life span differences between the sexes are modulated by an interplay among genetic, environmental and social factors.
View Article and Find Full Text PDFFrontotemporal dementia and amyotrophic lateral sclerosis are fatal and incurable neurodegenerative diseases linked to the pathological aggregation of the TDP-43 protein. This is an essential DNA/RNA-binding protein involved in transcription regulation, pre-RNA processing, and RNA transport. Having suitable animal models to study the mechanisms of TDP-43 aggregation is crucial to develop treatments against disease.
View Article and Find Full Text PDFThe longevity-homeoviscous adaptation (LHA) theory of ageing states that lipid composition of cell membranes is linked to metabolic rate and lifespan, which has been widely shown in mammals and birds but not sufficiently in fish. In this study, two species of the genus Amphiprion (Amphiprion percula and Amphiprion clarkii, with estimated maximum lifespan potentials [MLSP] of 30 and 9-16 years, respectively) and the damselfish Chromis viridis (estimated MLSP of 1-2 years) were chosen to test the LHA theory of ageing in a potential model of exceptional longevity. Brain, livers and samples of skeletal muscle were collected for lipid analyses and integral part in the computation of membrane peroxidation indexes (PIn) from phospholipid (PL) fractions and PL fatty acid composition.
View Article and Find Full Text PDFMost research on mechanisms of aging is being conducted in a very limited number of classical model species, i.e., laboratory mouse (), rat (), the common fruit fly () and roundworm ().
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a severe X-linked neuromuscular childhood disorder that causes progressive muscle weakness and degeneration. A lack of dystrophin in DMD leads to inflammatory response, autophagic dysregulation, and oxidative stress in skeletal muscle fibers that play a key role in the progression of the pathology. β-glucans can modulate immune function by modifying the phagocytic activity of immunocompetent cells, notably macrophages.
View Article and Find Full Text PDFAnnual fishes of the genus Nothobranchius inhabit ephemeral habitats in Eastern and Southeastern Africa. Their life cycle is characterized by very rapid maturation, a posthatch lifespan of a few weeks to months and embryonic diapause to survive the dry season. The species N.
View Article and Find Full Text PDFVisual cortical circuits show profound plasticity during early life and are later stabilized by molecular "brakes" limiting excessive rewiring beyond a critical period. The mechanisms coordinating the expression of these factors during the transition from development to adulthood remain unknown. We found that miR-29a expression in the visual cortex dramatically increases with age, but it is not experience-dependent.
View Article and Find Full Text PDFA progressive loss of protein homeostasis is characteristic of aging and a driver of neurodegeneration. To investigate this process quantitatively, we characterized proteome dynamics during brain aging in the short-lived vertebrate Nothobranchius furzeri combining transcriptomics and proteomics. We detected a progressive reduction in the correlation between protein and mRNA, mainly due to post-transcriptional mechanisms that account for over 40% of the age-regulated proteins.
View Article and Find Full Text PDFFollowing the publication of this article [1], the authors reported that the images of Figs. 1, 2 and 3 were published in the incorrect order, whereby they mismatch with their captions.
View Article and Find Full Text PDFBackground: Annual killifishes are adapted to surviving and reproducing over alternating dry and wet seasons. During the dry season, all adults die and desiccation-resistant embryos remain encased in dry mud for months or years in a state of diapause where their development is halted in anticipation of the months that have to elapse before their habitats are flooded again. Embryonic development of annual killifishes deviates from canonical teleost development.
View Article and Find Full Text PDFAging associates with progressive loss of skeletal muscle function, sometimes leading to sarcopenia, a process characterized by impaired mobility and weakening of muscle strength. Since aging associates with profound epigenetic changes, epigenetic landscape alteration analysis in the skeletal muscle promises to highlight molecular mechanisms of age-associated alteration in skeletal muscle. This study was conducted exploiting the short-lived turquoise killifish (), a relatively new model for aging studies.
View Article and Find Full Text PDFThe original version of this Article contained an error in the spelling of the author Jule Müller, which was incorrectly given as Julia Müller. Additionally, in Fig. 4a, the blue-red colour scale for fold change in ageing/disease regulation included a blue stripe in place of a red stripe at the right-hand end of the scale.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.