The inoculation of Saccharomyces cerevisiae starter cultures in grape musts is a common practice in wineries worldwide; however, native non-Saccharomyces yeast species are increasingly investigated as co-starters to augment the complexity and regionality of wine. In this study, an extensive collection of non-Saccharomyces yeasts from high-sugar matrices was created and screened with the aim to discover new strains with potentially positive oenological traits. After mining >400 yeasts from 167 samples collected across multiple Italian regions, the isolates were identified based on RAPD-PCR analysis and ITS sequencing.
View Article and Find Full Text PDFAzide complexes [M(RN(3))(CO)(3)P(2)]BPh(4)[M = Mn, Re; R = C(6)H(5)CH(2), 4-CH(3)C(6)H(4)CH(2), C(6)H(5), 4-CH(3)C(6)H(4), C(5)H(9); P = PPh(OEt)(2), PPh(2)(OEt)] were prepared by allowing tricarbonyl MH(CO)(3)P(2) hydride complexes to react first with Brønsted acid (HBF(4), CF(3)SO(3)H) and then with organic azide in the dark. In sunlight the reaction yielded tetraazabutadiene [M(eta(2)-1,4-R(2)N(4))(CO)(2)P(2)]BPh(4) complexes or, with benzyl azide, imine [M{eta(1)-NH[double bond, length as m-dash]C(H)Ar}(CO)(3)P(2)]BPh(4)(Ar = C(6)H(5), 4-CH(3)C(6)H(4)) derivatives. Tetraazabutadiene [M(eta(2)-1,4-R(2)N(4))(CO)(2)P(2)]BPh(4) complexes were also prepared by reacting dicarbonyl MH(CO)(2)P(3) species first with Brønsted acid and then with an excess of organic azide.
View Article and Find Full Text PDF