Serine-Threonine kinase CK2 supports malignant B-lymphocyte growth but its role in B-cell development and activation is largely unknown. Here, we describe the first B-cell specific knockout (KO) mouse model of the β regulatory subunit of CK2. CK2β mice present an increase in marginal zone (MZ) and a reduction in follicular B cells, suggesting a role for CK2 in the regulation of the B cell receptor (BCR) and NOTCH2 signaling pathways.
View Article and Find Full Text PDFBackground: Approximately one third of Diffuse Large B cell Lymphomas (DLBCL) are refractory or relapse. Novel therapeutic approaches under scrutiny include inhibitors of B-cell receptor (BCR) signaling. Protein kinase CK2 propels survival, proliferation and stress response in solid and hematologic malignancies and promotes a "non-oncogene addiction" phenotype.
View Article and Find Full Text PDFSerine-threonine kinase CK2 is highly expressed and pivotal for survival and proliferation in multiple myeloma, chronic lymphocytic leukemia and mantle cell lymphoma. Here, we investigated the expression of α catalytic and β regulatory CK2 subunits by immunohistochemistry in 57 follicular (FL), 18 Burkitt (BL), 52 diffuse large B-cell (DLBCL) non-Hodgkin lymphomas (NHL) and in normal reactive follicles. In silico evaluation of available Gene Expression Profile (GEP) data sets from patients and Western blot (WB) analysis in NHL cell-lines were also performed.
View Article and Find Full Text PDFNeisseria meningitidis is a human pathogen that can cause fatal sepsis and meningitis once it reaches the blood stream and the nervous system. Here we demonstrate that a fragment, released upon proteolysis of the surface-exposed protein Neisserial Heparin Binding Antigen (NHBA), by the bacterial protease NalP, alters the endothelial permeability by inducing the internalization of the adherens junction protein VE-cadherin. We found that C2 rapidly accumulates in mitochondria where it induces the production of reactive oxygen species: the latter are required for the phosphorylation of the junctional protein and for its internalization that, in turn, is responsible for the endothelial leakage.
View Article and Find Full Text PDF