Int J Med Inform
December 2024
Background: Usefulness of hysteroscopic metroplasty to improve reproductive outcomes is controversial and debated among reproductive specialists and, consequently, patients.
Methods: We performed a cross-sectional analysis to assess the quality, reliability, and level of misinformation in YouTube, Instagram, and TikTok videos about hysteroscopic metroplasty. Videos on each social network retrieved using "hysteroscopy" and "septate uterus" or "uterine septum" as keywords were assessed using Patient Education Materials Assessment Tool for audio-visual (PEMAT A/V) content, the modified DISCERN (mDISCERN), Global Quality Scale (GQS), Video Information and Quality Index (VIQI) and Misinformation assessment.
Bandgap-tuneable mixed-halide 3D perovskites are of interest for multi-junction solar cells, but suffer from photoinduced spatial halide segregation. Mixed-halide 2D perovskites are more resistant to halide segregation and are promising coatings for 3D perovskite solar cells. The properties of mixed-halide compositions depend on the local halide distribution, which is challenging to study at the level of single octahedra.
View Article and Find Full Text PDFCrystallization of low-dimensional perovskites is a complex process that leads to multidimensional films comprising two-dimensional (2D), quasi-2D, and three-dimensional (3D) phases. Most quasi-2D perovskite films possess a regular gradient with 2D phases located at the bottom of the film and 3D phases at the top. Recently, multiple studies have reported reverse-graded perovskite films, where the location of the 2D and 3D structures is inverted.
View Article and Find Full Text PDFPhotoinduced halide segregation hinders widespread application of three-dimensional (3D) mixed-halide perovskites. Much less is known about this phenomenon in lower-dimensional systems. Here, we study photoinduced halide segregation in lower-dimensional mixed iodide-bromide perovskites (PEAMA Pb (Br I ), with PEA: phenethylammonium and MA: methylammonium) through time-dependent photoluminescence (PL) spectroscopy.
View Article and Find Full Text PDF2H-Benzotriazol-2-ylethylammonium bromide and iodide and its difluorinated derivatives are synthesized and employed as interlayers for passivation of formamidinium lead triiodide (FAPbI) solar cells. In combination with PbI and PbBr, these benzotriazole derivatives form two-dimensional (2D) Ruddlesden-Popper perovskites (RPPs) as evidenced by their crystal structures and thin film characteristics. When used to passivate n-i-p FAPbI solar cells, the power conversion efficiency improves from 20% to close to 22% by enhancing the open-circuit voltage.
View Article and Find Full Text PDFCreating new donor materials is crucial for further advancing organic solar cells. Random terpolymers have been adopted to overcome shortcomings of regular alternating donor-acceptor (D-A) polymers of which the performance is often susceptible to batch-to-batch variations. In general, the properties and performance of efficient D -A-D -A and D-A -D-A terpolymers are sensitive to the D /D or A /A monomer ratios.
View Article and Find Full Text PDFLow-dimensional perovskites attract increasing interest due to tunable optoelectronic properties and high stability. Here, it is shown that perovskite thin films with a vertical gradient in dimensionality result in graded electronic bandgap structures that are ideal for photodiode applications. Positioning low-dimensional, vertically-oriented perovskite phases at the interface with the electron blocking layer increases the activation energy for thermal charge generation and thereby effectively lowers the dark current density to a record-low value of 5 × 10 mA cm without compromising responsivity, resulting in a noise-current-based specific detectivity exceeding 7 × 10 Jones at 600 nm.
View Article and Find Full Text PDF