Publications by authors named "Alessandro Bertuzzi"

Dodecanedioic acid (DC12) is a dicarboxylic acid present in protective polymers of fruit and leaves. We explored the effects of DC12 on metabolic dysfunction-associated steatohepatitis (MASH) and obesity. DC12 supplementation (100 mg/kg/day) was added to a high-fat diet (HFD) for 8 weeks in rodents to assess its impact on obesity and MASH prevention.

View Article and Find Full Text PDF

A high-fat diet increases the risk of insulin resistance, type-2 diabetes, and non-alcoholic steato-hepatitis. Here we identified two heat-shock proteins, Heat-Shock-Protein70 and Glucose-Regulated Protein78, which are increased in the jejunum of rats on a high-fat diet. We demonstrated a causal link between these proteins and hepatic and whole-body insulin-resistance, as well as the metabolic response to bariatric/metabolic surgery.

View Article and Find Full Text PDF

Objective: To assess the role of jejunum in insulin resistance in humans and in experimental animals.

Design: Twenty-four subjects undergoing biliopancreatic diversion (BPD) or Roux-en-Y gastric bypass (RYGB) were enrolled. Insulin sensitivity was measured at baseline and at 1 week after surgery using oral glucose minimal model.

View Article and Find Full Text PDF

Metabolic surgery improves insulin resistance and is associated with the remission of type 2 diabetes, but the mechanisms involved remain unknown. We find that human jejunal mucosa secretes heat shock proteins (HSPs) in vitro, in particular HSP70 and GRP78. Circulating levels of HSP70 are higher in people resistant to insulin, compared to the healthy and normalize after duodenal-jejunal bypass.

View Article and Find Full Text PDF

Intestinal nutrients stimulate insulin secretion more potently than intravenous (IV) glucose administration under similar plasma glucose levels (incretin effect). According to the anti-incretin theory, intestinal nutrients should also cause a reduction of insulin sensitivity and/or secretion (anti-incretin effect) to defend against hyperinsulinemia-hypoglycemia. An exaggerated anti-incretin effect could contribute to insulin resistance/type 2 diabetes, whereas reduction of anti-incretin signals might explain diabetes improvement after bariatric surgery.

View Article and Find Full Text PDF

The purpose of this study was to examine the contribution of nonesterified fatty acids (NEFA) and incretin to insulin resistance and diabetes amelioration after malabsorptive metabolic surgery that induces steatorrhea. In fact, NEFA infusion reduces glucose-stimulated insulin secretion, and high-fat diets predict diabetes development. Six healthy controls, 11 obese subjects, and 10 type 2 diabetic (T2D) subjects were studied before and 1 mo after biliopancreatic diversion (BPD).

View Article and Find Full Text PDF

Insulin resistance is the common denominator of several diseases including type 2 diabetes and cancer, and investigating the mechanisms responsible for insulin signaling impairment is of primary importance. A mathematical model of the insulin signaling network (ISN) is proposed and used to investigate the dose-response curves of components of this network. Experimental data of C2C12 myoblasts with phosphatase and tensin homologue (PTEN) suppressed and data of L6 myotubes with induced insulin resistance have been analyzed by the model.

View Article and Find Full Text PDF

Gastric bypass surgery can dramatically improve type 2 diabetes. It has been hypothesized that by excluding duodenum and jejunum from nutrient transit, this procedure may reduce putative signals from the proximal intestine that negatively influence insulin sensitivity (SI). To test this hypothesis, resection or bypass of different intestinal segments were performed in diabetic Goto-Kakizaki and Wistar rats.

View Article and Find Full Text PDF

Mathematical modeling of the glucose-insulin feedback system is necessary to the understanding of the homeostatic control, to analyze experimental data, to identify and quantify relevant biophysical parameters, to design clinical trials and to evaluate diabetes prevention or disease modification therapies. Much work has been made over the last 30years, and the time now seems ripe to provide a comprehensive review. The one here proposed is focused on the most important clinical/experimental tests performed to understand the mechanism of glucose homeostasis.

View Article and Find Full Text PDF

The mechanisms of type 2 diabetes remission after bariatric surgery is still not fully elucidated. In the present study, we tried to simulate the Roux-en-Y gastric bypass with a canonical or longer biliary limb by infusing a liquid formula diet into different intestinal sections. Nutrients (Nutrison Energy) were infused into mid- or proximal jejunum and duodenum during three successive days in 10 diabetic and 10 normal glucose-tolerant subjects.

View Article and Find Full Text PDF

Background: Two recent studies demonstrated that bariatric surgery induced remission of type 2 diabetes very soon after surgery and far too early to be attributed to weight loss. In this study, we sought to explore the mechanism/s of this phenomenon by testing the effects of proteins from the duodenum-jejunum conditioned-medium (CM) of db/db or Swiss mice on glucose uptake in vivo in Swiss mice and in vitro in both Swiss mice soleus and L6 cells. We studied the effect of sera and CM proteins from insulin resistant (IR) and insulin-sensitive subjects on insulin signaling in human myoblasts.

View Article and Find Full Text PDF

Objective: To elucidate the mechanisms of improvement/reversal of type 2 diabetes after Roux-en-Y gastric bypass (RYGB).

Methods: Fourteen morbidly obese subjects, 7 with normal glucose tolerance and 7 with type 2 diabetes, were studied before and 1 month after RYGB by euglycemic hyperinsulinemic clamp (EHC), by intravenous glucose tolerance test (IVGTT) and by oral glucose tolerance test (OGTT) in 3 different sessions. Intravenous glucose tolerance test IVGTT and OGTT insulin secretion rate (ISR) and sensitivity were obtained by the minimal model.

View Article and Find Full Text PDF

The rate of appearance (R(a)) of exogenous glucose in plasma after glucose ingestion is presently measured by tracer techniques that cannot be used in standard clinical testing such as the oral glucose tolerance test (OGTT). We propose a mathematical model that represents in a simple way the gastric emptying, the transport of glucose along the intestinal tract, and its absorption from gut lumen into portal blood. The model gives the R(a) time course in terms of parameters with a physiological counterpart and provides an expression for the release of incretin hormones as related to glucose transit into gut lumen.

View Article and Find Full Text PDF

Although commonly related to nutrient deprivation, the cause of the formation of the necrotic core in the multicellular tumour spheroids is still a controversial issue. We propose a simple model for the cell ATP production that assumes glucose and lactate as the only fuel substrates, and describes the main reactions occurring in the glycolytic and the oxidative pathways. Under the key assumption that cell death occurs when ATP production falls to a critical level, we formulate a multiscale model that integrates the energy metabolism at the cellular level with the diffusive transport of the metabolites in the spheroid mass.

View Article and Find Full Text PDF

Objective: The purpose of this study was to elucidate the mechanisms of diabetes reversibility after malabsorptive bariatric surgery.

Research Design And Methods: Peripheral insulin sensitivity and beta-cell function after either intravenous (IVGTT) or oral glucose tolerance (OGTT) tests and minimal model analysis were assessed in nine obese, type 2 diabetic subjects before and 1 month after biliopancreatic diversion and compared with those in six normal-weight control subjects. Insulin-dependent whole-body glucose disposal was measured by the euglycemic clamp, and glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) were also measured.

View Article and Find Full Text PDF

A mathematical model that represents the dynamics of intracellular insulin granules in beta-cells is proposed. Granule translocation and exocytosis are controlled by signals assumed to be essentially related to ATP-to-ADP ratio and cytosolic Ca(2+) concentration. The model provides an interpretation of the roles of the triggering and amplifying pathways of glucose-stimulated insulin secretion.

View Article and Find Full Text PDF

There is experimental evidence that a source of fatty acids (FAs) that is either exogenous or endogenous is necessary to support normal insulin secretion. Therefore, FAs comodulate the glucose-induced pancreatic insulin secretion. To assess the role of FAs, 16 morbidly obese nondiabetic patients and 6 healthy volunteers were studied.

View Article and Find Full Text PDF

Metabolically healthy skeletal muscle possesses the ability to switch easily between glucose and fat oxidation in response to homeostatic signals. In type 2 diabetes mellitus and obesity, the skeletal muscle shows a great reduction in this metabolic flexibility. A substrate like dodecanedioic acid (C-12), able to increase skeletal muscle glycogen stores via succinyl-CoA formation, might both postpone the fatigue and increase fatty acid utilization, since it does not affect insulin secretion.

View Article and Find Full Text PDF

This work illustrates the behavior of the interstitial pressure and of the interstitial fluid motion in tumor cords (cylindrical arrangements of tumor cells growing around blood vessels of the tumor) by means of numerical simulations on the basis of a mathematical model previously developed. The model describes the steady state of a tumor cord surrounded by necrosis and its time evolution following cell killing. The most relevant aspects of the dynamics of extracellular fluid are by computing the longitudinal average of the radial fluid velocity and of the pressure field.

View Article and Find Full Text PDF

To assess the effects of acute dietary saturated fat intake on glucose-induced insulin secretion rate (ISR), measured by the C-peptide deconvolution method, and on insulin clearance and sensitivity, five obese and five normal-weight women (controls) were studied after either a 100 g oral butter load or a 100 ml water load. At 120 min after the oral load a hyperglycaemic clamp was performed over 180 min. A dramatic increase of ISR occurred after butter compared with the water challenge in the controls (1305.

View Article and Find Full Text PDF

In this paper, the evolution of a tumour cord after treatment is investigated by extensive numerical simulations on the basis of a mathematical model developed by Bertuzzi et al. (submitted). The model is formulated in cylindrical symmetry adopting the continuum approach, and takes into account the influence of oxygen level on the proliferation and death rate of cells, the volume reduction due to disgregation of dead cells, and the cell killing effects of radiation and drugs.

View Article and Find Full Text PDF

The present study was aimed at evaluating the feasibility and reliability of lower limb skeletal muscle (SM) mass estimates obtained by bioimpedance analysis (BIA). BIA estimates were compared with the estimates obtained by dual-energy X-ray absorptiometry (DXA). Ten normal weight and 10 obese women had BIA and DXA evaluations.

View Article and Find Full Text PDF

A mathematical model is developed that describes the proliferative behaviour at the stationary state of the cell population within a tumour cord, i.e. in a cylindrical arrangement of tumour cells growing around a blood vessel and surrounded by necrosis.

View Article and Find Full Text PDF

In the present paper we propose a method of analysis of the cell kinetic characteristics of in vivo experimental tumours, that uses DNA-BrdUrd flow cytometry data at various times after the bromodeoxyuridine (BrdUrd) injection and mathematical modelling. The model of the cell population takes into account the cell-cell heterogeneity of the progression rate across cell cycle phases within the tumour, and assumes a strict correlation between the durations of S and G2M phases. The model also allows for a nonconstant DNA synthesis rate across S phase.

View Article and Find Full Text PDF