Incineration or extensive burning of the body, causing changes in the content and distribution of fluids, fixation and shrinking processes of tissues, can alter the typical macroscopic and microscopic characteristics of firearm wounds, hampering or at least complicating the reconstruction of gunshot fatalities. The present study aims at evaluating the potential role of micro-computed tomography (micro-CT) for detecting and quantifying gunshot residue (GSR) particles in experimentally produced intermediate-range gunshot wounds severely damaged by fire. Eighteen experimental shootings were performed on 18 sections of human calves surgically amputated for medical reasons at three different firing distances (5, 15 and 30 cm).
View Article and Find Full Text PDFGunshot residue (GSR) evidence may be altered or obscured by after-death events such as putrefaction, autolysis, and/or damage by animals. The present study aimed at evaluating and comparing the amount and differential distribution of GSR utilizing microcomputed tomography (microCT) analysis of fresh and decomposed gunshot wounds. A total of 60 experimental shootings at three different firing distances (5, 15, and 30 cm) were performed on human calves surgically amputated for medical reasons.
View Article and Find Full Text PDFEstimation of the firing range is often critical for reconstructing gunshot fatalities, where the main measurable evidence is the gunshot residue (GSR). In the present study intermediate-range gunshot wounds have been analysed by means of a micro-computed tomography (micro-CT) coupled to an image analysis software in order to quantify the powder particles and to determine the firing distance. A total of 50 shootings were performed on skin sections obtained from human legs surgically amputated for medical reasons.
View Article and Find Full Text PDF