Redox-active polymers serving as the active materials in solid-state electrodes offer a promising path toward realizing all-organic batteries. While both cathodic and anodic redox-active polymers are needed, the diversity of the available anodic materials is limited. Here, we predict solid-state structural, ionic, and electronic properties of anodic, phthalimide-containing polymers using a multiscale approach that combines atomistic molecular dynamics, electronic structure calculations, and machine learning surrogate models.
View Article and Find Full Text PDFCoarse-grained (CG) molecular dynamics (MD) simulations have grown in applicability over the years. The recently released version of the Martini CG force field (Martini 3) has been successfully applied to simulate many processes, including protein-ligand binding. However, the current ligand parametrization scheme is manual and requires an a priori reference all-atom (AA) simulation for benchmarking.
View Article and Find Full Text PDFStretchable light-emitting materials are the key components for realizing skin-like displays and optical biostimulation. All the stretchable emitters reported to date, to the best of our knowledge, have been based on electroluminescent polymers that only harness singlet excitons, limiting their theoretical quantum yield to 25%. Here we present a design concept for imparting stretchability onto electroluminescent polymers that can harness all the excitons through thermally activated delayed fluorescence, thereby reaching a near-unity theoretical quantum yield.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
November 2022
High dielectric constant organic semiconductors, often obtained by the use of ethylene glycol (EG) side chains, have gained attention in recent years in the efforts of improving the device performance for various applications. Dielectric constant enhancements due to EGs have been demonstrated extensively, but various effects, such as the choice of the particular molecule and the frequency and temperature regime, that determine the extent of this enhancement require further understanding. In this work, we study these effects by means of polarizable molecular dynamics simulations on a carefully selected set of fullerene derivatives with EG side chains.
View Article and Find Full Text PDFMolecular dynamics simulations play an increasingly important role in the rational design of (nano)-materials and in the study of biomacromolecules. However, generating input files and realistic starting coordinates for these simulations is a major bottleneck, especially for high throughput protocols and for complex multi-component systems. To eliminate this bottleneck, we present the polyply software suite that provides 1) a multi-scale graph matching algorithm designed to generate parameters quickly and for arbitrarily complex polymeric topologies, and 2) a generic multi-scale random walk protocol capable of setting up complex systems efficiently and independent of the target force-field or model resolution.
View Article and Find Full Text PDFFor many years, fullerene derivatives have been the main n-type material of organic electronics and optoelectronics. Recently, fullerene derivatives functionalized with ethylene glycol (EG) side chains have been showing important properties such as enhanced dielectric constants, facile doping and enhanced self-assembly capabilities. Here, we have prepared field-effect transistors using a series of these fullerene derivatives equipped with EG side chains of different lengths.
View Article and Find Full Text PDFDimerization free energies are fundamental quantities that describe the strength of interaction of different molecules. Obtaining accurate experimental values for small molecules and disentangling the conformations that contribute most to the binding can be extremely difficult, due to the size of the systems and the small energy differences. In many cases, one has to resort to computational methods to calculate such properties.
View Article and Find Full Text PDFSupramolecular aggregates of synthetic dye molecules offer great perspectives to prepare biomimetic functional materials for light-harvesting and energy transport. The design is complicated by the fact that structure-property relationships are hard to establish, because the molecular packing results from a delicate balance of interactions and the excitonic properties that dictate the optics and excited state dynamics, in turn sensitively depend on this packing. Here we show how an iterative multiscale approach combining molecular dynamics and quantum mechanical exciton modeling can be used to obtain accurate insight into the packing of thousands of cyanine dye molecules in a complex double-walled tubular aggregate in close interaction with its solvent environment.
View Article and Find Full Text PDFThe Martini model, a coarse-grained force field initially developed with biomolecular simulations in mind, has found an increasing number of applications in the field of soft materials science. The model's underlying building block principle does not pose restrictions on its application beyond biomolecular systems. Here, the main applications to date of the Martini model in materials science are highlighted, and a perspective for the future developments in this field is given, particularly in light of recent developments such as the new version of the model, Martini 3.
View Article and Find Full Text PDFThe coarse-grained Martini force field is widely used in biomolecular simulations. Here we present the refined model, Martini 3 ( http://cgmartini.nl ), with an improved interaction balance, new bead types and expanded ability to include specific interactions representing, for example, hydrogen bonding and electronic polarizability.
View Article and Find Full Text PDFThe 'phonon-glass electron-crystal' concept has triggered most of the progress that has been achieved in inorganic thermoelectrics in the past two decades. Organic thermoelectric materials, unlike their inorganic counterparts, exhibit molecular diversity, flexible mechanical properties and easy fabrication, and are mostly 'phonon glasses'. However, the thermoelectric performances of these organic materials are largely limited by low molecular order and they are therefore far from being 'electron crystals'.
View Article and Find Full Text PDFNatural light-harvesting antennae employ a dense array of chromophores to optimize energy transport via the formation of delocalized excited states (excitons), which are critically sensitive to spatio-energetic variations of the molecular structure. Identifying the origin and impact of such variations is highly desirable for understanding and predicting functional properties yet hard to achieve due to averaging of many overlapping responses from individual systems. Here, we overcome this problem by measuring the heterogeneity of synthetic analogues of natural antennae-self-assembled molecular nanotubes-by two complementary approaches: single-nanotube photoluminescence spectroscopy and ultrafast 2D correlation.
View Article and Find Full Text PDFThe detailed understanding of the binding of small molecules to proteins is the key for the development of novel drugs or to increase the acceptance of substrates by enzymes. Nowadays, computer-aided design of protein-ligand binding is an important tool to accomplish this task. Current approaches typically rely on high-throughput docking essays or computationally expensive atomistic molecular dynamics simulations.
View Article and Find Full Text PDFIncorporating ethylene glycols (EGs) into organic semiconductors has become the prominent strategy to increase their dielectric constant. However, EG's contribution to the dielectric constant is due to nuclear relaxations, and therefore, its relevance for various organic electronic applications depends on the time scale of these relaxations, which remains unknown. In this work, by means of a new computational protocol based on polarizable molecular dynamics simulations, the time- and frequency-dependent dielectric constant of a representative fullerene derivative with EG side chains is predicted, the origin of its unusually high dielectric constant is explained, and design suggestions are made to further increase it.
View Article and Find Full Text PDFThe computational and conceptual simplifications realized by coarse-grain (CG) models make them a ubiquitous tool in the current computational modeling landscape. Building block based CG models, such as the Martini model, possess the key advantage of allowing for a broad range of applications without the need to reparametrize the force field each time. However, there are certain inherent limitations to this approach, which we investigate in detail in this work.
View Article and Find Full Text PDFThe low efficiency of organic photovoltaic (OPV) devices has often been attributed to the strong Coulombic interactions between the electron and hole, impeding the charge separation process. Recently, it has been argued that by increasing the dielectric constant of materials used in OPVs, this strong interaction could be screened. In this work, we report the application of periodic density functional theory together with the coupled perturbed Kohn-Sham method to calculate the electronic contribution to the dielectric constant for fullerene C derivatives, a ubiquitous class of molecules in the field of OPVs.
View Article and Find Full Text PDFThe flexibility of first-principles (ab initio) calculations with the SO-CASSCF (complete active space self-consistent field theory with a treatment of the spin-orbit (SO) coupling by state interaction) method is used to quantify the electrostatic and covalent contributions to crystal field parameters. Two types of systems are chosen for illustration: 1) The ionic and experimentally well-characterized PrCl crystal; this study permits a revisitation of the partition of contributions proposed in the early days of crystal field theory; and 2) a series of sandwich molecules [Ln(η -C H ) ] , with Ln=Dy, Ho, Er, and Tm and n=5, 6, and 8, in which the interaction between Ln and the aromatic ligands is more difficult to describe within an electrostatic approach. It is shown that a model with three layers of charges reproduces the electrostatic field generated by the ligands and that the covalency plays a qualitative role.
View Article and Find Full Text PDFIn this contribution, for the first time, the molecular n-doping of a donor-acceptor (D-A) copolymer achieving 200-fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D-A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl](NDI)-alt-5,5'-(2,2'-bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm after doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine is achieved, which is the highest reported value for n-type D-A copolymers.
View Article and Find Full Text PDFControl over the morphology of the active layer of bulk heterojunction (BHJ) organic solar cells is paramount to achieve high-efficiency devices. However, no method currently available can predict morphologies for a novel donor-acceptor blend. An approach which allows reaching relevant length scales, retaining chemical specificity, and mimicking experimental fabrication conditions, and which is suited for high-throughput schemes has been proven challenging to find.
View Article and Find Full Text PDFObjectives: The association between periodontal disease and adverse pregnancy outcomes (APO), primarily preterm birth (PTB), is still controversially discussed in the literature. Therefore, the aim of the present systematic review was to analyze the existing literature on the potential association between inflammatory mediators detected in gingival crevicular fluid (GCF) and APO.
Materials And Methods: MEDLINE (PubMed) and EMBASE databases were searched for entries up to April 2012 and studies were selected by two independent reviewers.
Objective: Predictable coverage of multiple adjacent gingival recessions (MAGRs) is a major challenge for clinicians. Although several surgical techniques have been proposed to treat MAGR, it is still unclear as to what extent the proposed approaches may lead to predictable root coverage. The aim of this article is to identify the predictability of the available surgical techniques used to achieve complete root coverage (CRC) of Miller Class I, II, and III MAGRs.
View Article and Find Full Text PDFClin Adv Periodontics
August 2011
Introduction: The goal of regenerative periodontal therapy is the reconstitution of lost periodontal structures (i.e., the new formation of root cementum, periodontal ligament, and alveolar bone).
View Article and Find Full Text PDFIn response to the Association of American Medical Colleges' call for increases in medical school enrollment, several new MD-granting schools have opened in recent years. This article chronicles the development of one of these new schools, The Commonwealth Medical College (TCMC), a private, not-for-profit, independent medical college with a distributive model of education and regional campuses in Scranton, Wilkes-Barre, and Williamsport, Pennsylvania. TCMC is unique among new medical schools because it is not affiliated with a parent university.
View Article and Find Full Text PDF