Publications by authors named "Alessandra Zingoni"

Lipid nanoparticles (LNPs) play a crucial role in addressing genetic disorders, and cancer, and combating pandemics such as COVID-19 and its variants. Yet, the ability of LNPs to effectively encapsulate large-size DNA molecules remains elusive. This is a significant limitation, as the successful delivery of large-size DNA holds immense potential for gene therapy.

View Article and Find Full Text PDF

The existing manufacturing protocols for CAR-T cell therapies pose notable challenges, particularly in attaining a transient transfection that endures for a significant duration. To address this gap, this study aims to formulate a transfection protocol utilizing multiple lipid-based nanoparticles (LNPs) administrations to enhance transfection efficiency (TE) to clinically relevant levels. By systematically fine-tuning and optimizing our transfection protocol through a series of iterative refinements, we have accomplished a remarkable one-order-of-magnitude augmentation in TE within the immortalized T-lymphocyte Jurkat cell line.

View Article and Find Full Text PDF

2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) is the endogenous agonist of STING; as such, cGAMP has powerful immunostimulatory activity, due to its capacity to stimulate type I interferon-mediated immunity. Recent evidence indicates that cancer cells, under certain conditions, can release cGAMP extracellularly, a phenomenon currently considered important for therapeutic responses and tumor rejection. Nonetheless, the mechanisms that regulate cGAMP activity in the extracellular environment are still largely unexplored.

View Article and Find Full Text PDF

Cancer progression is continuously controlled by the immune system which can identify and destroy nascent tumor cells or inhibit metastatic spreading. However, the immune system and its deregulated activity in the tumor microenvironment can also promote tumor progression favoring the outgrowth of cancers capable of escaping immune control, in a process termed cancer immunoediting. This process, which has been classified into three phases, i.

View Article and Find Full Text PDF

Natural Killer (NK) cells act as important regulators in the development and progression of hematological malignancies and their suppressor activity against Multiple Myeloma (MM) cells has been confirmed in many studies. Significant changes in the distribution of NK cell subsets and dysfunctions of NK cell effector activities were described in MM patients and correlated with disease staging. Thus, restoring or enhancing the functionality of these effectors for the treatment of MM represents a critical need.

View Article and Find Full Text PDF

Natural Killer (NK) cells are innate cytotoxic lymphoid cells that play a crucial role in cancer immunosurveillance. NKG2D is an activating receptor that binds to MIC and ULBP molecules typically induced on damaged, transformed, or infected cells. The secretion of NKG2D ligands (NKG2DLs) through protease-mediated cleavage or in an extracellular vesicle (EV) is a mode to control their cell surface expression and a mechanism used by cancer cells to evade NKG2D-mediated immunosurveillance.

View Article and Find Full Text PDF

The success of senescence-based anticancer therapies relies on their anti-proliferative power and on their ability to trigger anti-tumor immune responses. Indeed, genotoxic drug-induced senescence increases the expression of NK cell-activating ligands on multiple myeloma (MM) cells, boosting NK cell recognition and effector functions. Senescent cells undergo morphological change and context-dependent functional diversification, acquiring the ability to secrete a vast pool of molecules termed the senescence-associated secretory phenotype (SASP), which affects neighboring cells.

View Article and Find Full Text PDF

Natural killer (NK) cell activation is regulated by activating and inhibitory receptors that facilitate diseased cell recognition. Among activating receptors, NKG2D and DNAM-1 play a pivotal role in anticancer immune responses since they bind ligands upregulated on transformed cells. During tumor progression, however, these receptors are frequently downmodulated and rendered functionally inactive.

View Article and Find Full Text PDF

NKG2D ligands play a relevant role in Natural Killer (NK) cell -mediated immune surveillance of multiple myeloma (MM). Different levels of regulation control the expression of these molecules at cell surface. A number of oncogenic proteins and miRNAs act as negative regulators of NKG2D ligand transcription and translation, but the molecular mechanisms sustaining their basal expression in MM cells remain poorly understood.

View Article and Find Full Text PDF

New technologies with the capacity to tune immune system activity are highly desired in clinical practice and disease management. Here we demonstrate that nanoparticles with a protein corona enriched with gelsolin (GSN), an abundant plasma protein that acts as a modulator of immune responses, are avidly captured by human monocytic THP-1 cells and by leukocyte subpopulations derived from healthy donors . In human monocytes, GSN modulates the production of tumor necrosis factor alpha (TNF-α) in an inverse dose-dependent manner.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) are largely used in the treatment of patients with advanced non-small-cell lung cancer (NSCLC). Novel biomarkers that provide biological information that could be useful for clinical management are needed. In this respect, extracellular vesicles (EV)-associated microRNAs (miRNAs) that are the principal vehicle of intercellular communication may be important sources of biomarkers.

View Article and Find Full Text PDF

Trogocytosis modulates immune responses, with still unclear underlying molecular mechanisms. Using leukemia mouse models, we found that lymphocytes perform trogocytosis at high rates with tumor cells. While performing trogocytosis, both Natural Killer (NK) and CD8 T cells acquire the checkpoint receptor PD-1 from leukemia cells.

View Article and Find Full Text PDF

For several decades, surface grafted polyethylene glycol (PEG) has been a go-to strategy for preserving the synthetic identity of liposomes in physiological milieu and preventing clearance by immune cells. However, the limited clinical translation of PEGylated liposomes is mainly due to the protein corona formation and the subsequent modification of liposomes' synthetic identity, which affects their interactions with immune cells and blood residency. Here we exploit the electric charge of DNA to generate unPEGylated liposome/DNA complexes that, upon exposure to human plasma, gets covered with an opsonin-deficient protein corona.

View Article and Find Full Text PDF

Natural killer (NK) cells are innate cytotoxic lymphocytes that play a key role in cancer immunosurveillance thanks to their ability to recognize and kill cancer cells. NKG2D is an activating receptor that binds to MIC and ULBP molecules typically induced on damaged, transformed or infected cells. The release of NKG2D ligands (NKG2DLs) in the extracellular milieu through protease-mediated cleavage or by extracellular vesicle (EV) secretion allows cancer cells to evade NKG2D-mediated immunosurveillance.

View Article and Find Full Text PDF

Multiple Myeloma (MM) is an incurable hematologic malignancy of terminally differentiated plasma cells (PCs), where immune interactions play a key role in the control of cancer cell growth and survival. In particular, MM is characterized by a highly immunosuppressive bone marrow microenvironment where the anticancer/cytotoxic activity of Natural Killer (NK) cells is impaired. This study is focused on understanding whether modulation of neddylation can regulate NK cell-activating ligands expression and sensitize MM to NK cell killing.

View Article and Find Full Text PDF

Rearrangement of the actin cytoskeleton is critical for cytotoxic and immunoregulatory functions as well as migration of natural killer (NK) cells. However, dynamic reorganization of actin is a complex process, which remains largely unknown. Here, we investigated the role of the protein Cereblon (CRBN), an E3 ubiquitin ligase complex co-receptor and the primary target of the immunomodulatory drugs, in NK cells.

View Article and Find Full Text PDF

Nanomedicine has demonstrated a substantial role in vaccine development against severe acute respiratory syndrome coronavirus (SARS-CoV-2 and COVID-19). Although nanomedicine-based vaccines have now been validated in millions of individuals worldwide in phase 4 and tracking of sex-disaggregated data on COVID-19 is ongoing, immune responses that underlie COVID-19 disease outcomes have not been clarified yet. A full understanding of sex-role effects on the response to nanomedicine products is essential to building an effective and unbiased response to the pandemic.

View Article and Find Full Text PDF

SAMHD1 is a host restriction factor that functions to restrict both retroviruses and DNA viruses, based on its nuclear deoxynucleotide triphosphate (dNTP) hydrolase activity that limits availability of intracellular dNTP pools. In the present study, we demonstrate that SAMHD1 expression was increased following human cytomegalovirus (HCMV) infection, with only a modest effect on infectious virus production. SAMHD1 was rapidly phosphorylated at residue T592 after infection by cellular cyclin-dependent kinases, especially Cdk2, and by the viral kinase pUL97, resulting in a significant fraction of phosho-SAMHD1 being relocalized to the cytoplasm of infected fibroblasts, in association with viral particles and dense bodies.

View Article and Find Full Text PDF

Understanding how the innate immune system keeps human cytomegalovirus (HCMV) in check has recently become a critical issue in light of the global clinical burden of HCMV infection in newborns and immunodeficient patients. Innate immunity constitutes the first line of host defense against HCMV as it involves a complex array of cooperating effectors - e.g.

View Article and Find Full Text PDF

NKG2D is an activating receptor expressed by NK cells and some subsets of T cells and represents a major recognition receptor for detection and elimination of cancer cells. The ligands of NKG2D are stress-induced self-proteins that can be secreted as soluble molecules by protease-mediated cleavage. The release of NKG2D ligands in the extracellular milieu is considered a mode of finely controlling their surface expression levels and represents a relevant immune evasion mechanism employed by cancer cells to elude NKG2D-mediated immune surveillance.

View Article and Find Full Text PDF

Bone marrow stromal cells (BMSCs) strongly contribute to multiple myeloma (MM) progression, promoting the survival and growth of malignant plasma cells (PCs). However, the possible impact of these cells on the immune-mediated recognition of MM cells remains largely unknown. DNAM-1 activating receptor plays a prominent role in NK cell anti-MM response engaging the ligands poliovirus receptor (PVR) and nectin-2 on malignant PCs.

View Article and Find Full Text PDF

Over the last decade nanomaterials have had a major impact on human health for the early detection and treatment of many diseases. The future success of clinically translatable nanomaterials lies in the combination of several functionalities to realize a personalized medical experience for patients. To maintain promises, concerns arising from toxic potential and off-target accumulation of nanomaterials must be addressed first.

View Article and Find Full Text PDF