Publications by authors named "Alessandra Valcarcel"

Diffusion MRI is the dominant non-invasive imaging method used to characterize white matter organization in health and disease. Increasingly, fiber-specific properties within a voxel are analyzed using fixels. While tools for conducting statistical analyses of fixel-wise data exist, currently available tools support only a limited number of statistical models.

View Article and Find Full Text PDF

When individual subjects are imaged with multiple modalities, biological information is present not only within each modality, but also between modalities - that is, in how modalities covary at the voxel level. Previous studies have shown that local covariance structures between modalities, or intermodal coupling (IMCo), can be summarized for two modalities, and that two-modality IMCo reveals otherwise undiscovered patterns in neurodevelopment and certain diseases. However, previous IMCo methods are based on the slopes of local weighted linear regression lines, which are inherently asymmetric and limited to the two-modality setting.

View Article and Find Full Text PDF

The functions of the human brain are metabolically expensive and reliant on coupling between cerebral blood flow (CBF) and neural activity, yet how this coupling evolves over development remains unexplored. Here, we examine the relationship between CBF, measured by arterial spin labeling, and the amplitude of low-frequency fluctuations (ALFF) from resting-state magnetic resonance imaging across a sample of 831 children (478 females, aged 8-22 years) from the Philadelphia Neurodevelopmental Cohort. We first use locally weighted regressions on the cortical surface to quantify CBF-ALFF coupling.

View Article and Find Full Text PDF

Background And Purpose: The presence of a paramagnetic rim around a white matter lesion has recently been shown to be a hallmark of a particular pathological type of multiple sclerosis lesion. Increased prevalence of these paramagnetic rim lesions is associated with a more severe disease course in MS, but manual identification is time-consuming. We present APRL, a method to automatically detect paramagnetic rim lesions on 3T T2*-phase images.

View Article and Find Full Text PDF

Total brain white matter lesion (WML) volume is the most widely established magnetic resonance imaging (MRI) outcome measure in studies of multiple sclerosis (MS). To estimate WML volume, there are a number of automatic segmentation methods available, yet manual delineation remains the gold standard approach. Automatic approaches often yield a probability map to which a threshold is applied to create lesion segmentation masks.

View Article and Find Full Text PDF
Article Synopsis
  • This paper introduces Tiramisu, a fully convolutional densely connected network designed for segmenting multiple sclerosis (MS) lesions using a unique 2.5D approach that incorporates stacked slices from three anatomical planes.
  • The use of this approach allows the network to gain global context from individual slices and local context from adjacent slices, enhancing segmentation accuracy by leveraging a more extensive training dataset.
  • Experimental results show Tiramisu's competitive edge in MS lesion segmentation, achieving top scores in evaluations such as the Longitudinal MS Lesion Segmentation Challenge, with a noteworthy overall score of 93.1 and leading metrics for Dice coefficient and lesion-wise true positive rate.
View Article and Find Full Text PDF

Background And Purpose: Magnetic resonance imaging (MRI) is crucial for in vivo detection and characterization of white matter lesions (WML) in multiple sclerosis (MS). The most widely established MRI outcome measure is the volume of hyperintense lesions on T2-weighted images (T2L). Unfortunately, T2L are non-specific for the level of tissue destruction and show a weak relationship to clinical status.

View Article and Find Full Text PDF

We propose a new approach to Multiple Sclerosis lesion segmentation that utilizes synthesized images. A new method of image synthesis is considered: joint intensity fusion (JIF). JIF synthesizes an image from a library of deformably registered and intensity normalized atlases.

View Article and Find Full Text PDF

Background And Purpose: Magnetic resonance imaging (MRI) is crucial for in vivo detection and characterization of white matter lesions (WMLs) in multiple sclerosis. While WMLs have been studied for over two decades using MRI, automated segmentation remains challenging. Although the majority of statistical techniques for the automated segmentation of WMLs are based on single imaging modalities, recent advances have used multimodal techniques for identifying WMLs.

View Article and Find Full Text PDF

To date, gene-based rare variant testing approaches have focused on aggregating information across sets of variants to maximize statistical power in identifying genes showing significant association with diseases. Beyond identifying genes that are associated with diseases, the identification of causal variant(s) in those genes and estimation of their effect is crucial for planning replication studies and characterizing the genetic architecture of the locus. However, we illustrate that straightforward single-marker association statistics can suffer from substantial bias introduced by conditioning on gene-based test significance, due to the phenomenon often referred to as "winner's curse.

View Article and Find Full Text PDF

The aggregation of functionally associated variants given a priori biological information can aid in the discovery of rare variants associated with complex diseases. Many methods exist that aggregate rare variants into a set and compute a single value summarizing association between the set of rare variants and a phenotype of interest. These methods are often called gene-based, rare variant tests of association because the variants in the set are often all contained within the same gene.

View Article and Find Full Text PDF

Current rare-variant, gene-based tests of association often suffer from a lack of statistical power to detect genotype-phenotype associations as a result of a lack of prior knowledge of genetic disease models combined with limited observations of extremely rare causal variants in population-based samples. The use of pedigree data, in which rare variants are often more highly concentrated than in population-based data, has been proposed as 1 possible method for enhancing power. Methods for combining multiple gene-based tests of association into a single summary value are a robust approach to different genetic architectures when little a priori knowledge is available about the underlying genetic disease model.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhuousj17g0ap543118h1f03gr8ranb6j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once