Weeds have always been considered an insidious enemy, capable of reducing crop production. Conversely, the agroecological vision attributes a key role to the spontaneous flora in promoting plant diversity and belowground interactions, which may improve the ecological performance of agroecosystems. We summarized the literature on the weeds' arbuscular-mycorrhizae (AM) interaction and we analyzed evidence on the: (i) AM suppressive/selective effect on weed communities; (ii) effect of weeds on AM colonization, and (iii) positive role of AM-supporting weeds on forming shared mycorrhizal hyphal connections in agroecosystems.
View Article and Find Full Text PDFCrop diversification in spatial and temporal patterns can optimize the synchronization of nutrients plant demand and availability in soils, as plant diversity and soil microbial communities are the main drivers of biogeochemical C and nutrient cycling. The introduction of multi-cropping in organic vegetable production can represent a key strategy to ensure efficient complementation mediated by soil microbiota, including beneficial mycorrhizal fungi. This study shows the effect of the introduction of multi-cropping in five European organic vegetable systems (South-West: Italy; North-West: Denmark and Belgium; North-East: Finland and Latvia) on: (i) soil physicochemical parameters; (ii) soil microbial biomass stoichiometry; (iii) crop root mycorrhization; (iv) bacterial and fungal diversity and composition in crop rhizosphere; (v) relative abundance of selected fungal pathogens species.
View Article and Find Full Text PDFMassive sequencing of fungal communities showed that climatic factors, followed by edaphic and spatial variables, are feasible predictors of fungal richness and community composition. This study, based on a long-term field experiment with tillage and no-tillage management since 1995 and with a crop rotation introduced in 2009, confirmed that tillage practices shape soil properties and impact soil fungal communities. Results highlighted higher biodiversity of saprotrophic fungi in soil sites with low disturbance and an inverse correlation between the biodiversity of ectomycorrhizal and saprotrophic fungi.
View Article and Find Full Text PDFMycorrhizal symbiosis represents a valuable tool for increasing plant nutrient uptake, affecting system biodiversity, ecosystem services and productivity. Introduction of agroecological service crops (ASCs) in cropping systems may determine changes in weed community, that can affect the development of the mycorrhizal mycelial network in the rhizosphere, favoring or depressing the cash crop mycorrhization. Two no-till Mediterranean organic horticultural systems were considered: one located in central Italy, where organic melon was transplanted on four winter-cereals mulches (rye, spelt, barley, wheat), one located in southern Italy (Sicily), where barley (as catch crop) was intercropped in an organic young orange orchard, with the no tilled, unweeded systems taken as controls.
View Article and Find Full Text PDFFEMS Microbiol Rev
November 2020
This paper explores the effect of agroecological service crops (ASCs), i.e., crops included in the crop rotation for their ecosystem services, terminated with an in-line tillage roller crimper (ILRC) on weed community composition and their functional traits in comparison to a tilled control without ASC.
View Article and Find Full Text PDFThe mycorrhizal fungi are symbiotic organisms able to provide many benefits to crop production by supplying a set of ecosystem functions. A recent ecological approach based on the ability of the fungi community to influence plant-plant interactions by extraradical mycelium development may be applied to diversified, herbaceous agroecosystems. Our hypothesis is that the introduction of a winter cereal cover crop (CC) as arbuscular mycorrhizal fungi (AMF)-host plant in an organic rotation can boosts the AMF colonization of the other plants, influencing crop-weed interference.
View Article and Find Full Text PDFIn order to develop a non-chemical method such as grafting effective against well-known artichoke soil borne diseases, an anatomical study of union formation in artichoke grafted onto selected wild and cultivated cardoon rootstocks, both resistant to Verticillium wilt, was performed. The cardoon accessions Belgio (cultivated cardoon) and Sardo (wild cardoon) were selected as rootstocks for grafting combinations with the artichoke cv. Romolo.
View Article and Find Full Text PDFBackground: A glass-matrix fertiliser (GMF), a by-product from ceramic industries, releases nutrients only in the presence of complexing solutions, similar to those exuded by plant roots. This ensures a slow release of nutrients over time, limiting the risk of their loss in the environment. With the aim to improve fertiliser performance, GMF was mixed with vine vinasse (DVV), pastazzo (a by-product of the citrus processing industry, PAS) or green compost (COMP) and nutrient release was evaluated by citric and chloridric acid extraction, at different concentrations.
View Article and Find Full Text PDF