Publications by authors named "Alessandra Tonelli"

Background: Familial hemiplegic migraine (FHM) is a rare autosomal dominant migraine subtype, characterized by fully reversible motor weakness as a specific symptom of aura. Mutations in the ion transportation coding genes CACNA1A , ATP1A2 and SCN1A are responsible for the FHM phenotype. Moreover, some mutations in ATP1A2 or SCN1A also may lead to epilepsy.

View Article and Find Full Text PDF

Mutations in the conserved telomere maintenance component 1 (CTC1) gene were recently described in Coats plus syndrome and in cerebroretinal microangiopathy with calcifications and cysts. Norrie disease protein (NDP) gene was found mutated in Norrie disease, in Familial Exudative Vitreoretinopathy, and in Coats syndrome. Here we describe a boy affected by Norrie disease who developed typical features of cerebroretinal microangiopathy with calcifications and cysts.

View Article and Find Full Text PDF

Hemiplegic migraine constitutes an unusual form, characterized by periodic attacks of migraine with a motor component (hemiplegia). Familial forms are dominantly inherited, and are attributable to mutations in genes encoding proteins involved in ion transportation, including ATP1A2, which codes for the α-2 isoform of the sodium-potassium adenosine triphosphatase, a P-type cation transport adenosine triphosphatase, and responsible for the so-called familial hemiplegic migraine type 2. We describe a 9-year-old boy affected by familial hemiplegic migraine, with a novel ATP1A2 gene mutation (c.

View Article and Find Full Text PDF

Neurological disorders characterized by abnormal neuronal migration, organization, axon guidance, and maintenance have recently been associated with missense and splice-site mutations in the genes encoding α- and β-tubulin isotypes TUBA1A, TUBB2B, TUBB3, and TUBA8. We found a novel heterozygous mutation c.419G > C in exon 4 of the gene encoding TUBB2B in a female with microcephaly, agenesis of the corpus callosum, open-lip schizencephaly of the left parietal lobe, extensive polymicrogyria, basal ganglia and thalami dysmorphisms, and vermis and right third nerve hypoplasia.

View Article and Find Full Text PDF

Cornelia de Lange syndrome is a pleiotropic developmental syndrome characterized by growth and cognitive impairment, facial dysmorphic features, limb anomalies, and other malformations. Mutations in core cohesin genes SMC1A and SMC3, and the cohesin regulatory gene, NIPBL, have been identified in Cornelia de Lange syndrome probands. Patients with NIPBL mutations have more severe phenotypes when compared to those with mutations in SMC1A or SMC3.

View Article and Find Full Text PDF

Background: Mutations in the calcium channel voltage dependent P/Q-type alpha-1A subunit (CACNA1A) can cause different neurological disorders which share a wide range of symptoms, including episodic ataxia type 2 (EA2), familial hemiplegic migraine (FHM1) and progressive spinocerebellar ataxia (SCA6).

Objective: To describe a three generations family in which a spectrum of different phenotypes, ranging from SCA6 (proband), to EA2 (proband's mother) to FHM1 (proband's mother and proband's aunt) was found. All of the family members carried a novel CACNA1A missense mutation.

View Article and Find Full Text PDF

Ataxia with oculomotor apraxia (AOA) type 2 (AOA2 MIM 606002) is a recessive subtype of AOA characterized by cerebellar atrophy, oculomotor apraxia, early loss of reflexes, and peripheral neuropathy. Various mutations either in homozygous or compound heterozygous condition were so far identified in the associated gene SETX (MIM 608465). SETX encodes a large protein called senataxin with a DNA-RNA helicase domain and a putative N-terminus protein interaction domain.

View Article and Find Full Text PDF

The late-infantile-onset forms of neuronal ceroid lipofuscinosis (LINCL) are the most genetically heterogeneous group among the autosomal recessive neuronal ceroid lipofuscinoses (NCLs), with causative mutations found in CLN1, CLN2, CLN5, CLN6, CLN7 (MFSD8), and CLN8 genes. Homozygous mutations in CLN8 are associated with two distinct phenotypes: progressive epilepsy and mental retardation (EPMR), first identified in Finland; and a variant of late-infantile NCL (v-LINCL) described in a subset of Turkish and Italian patients. The function of the protein encoded by CLN8 is currently unknown.

View Article and Find Full Text PDF

Familial hemiplegic migraine (FHM) is a severe dominant form of migraine with aura associated with transient hemiparesis. Several other neurological signs and symptoms can be associated with FHM such as cerebellar abnormalities, cerebral edema and coma after minor head trauma, epileptic seizures and mental retardation. The sporadic form of hemiplegic migraine named SHM, presents with identical clinical symptoms.

View Article and Find Full Text PDF

Mutations in the SPG7 gene encoding a mitochondrial protein termed paraplegin, are responsible for a recessive form of hereditary spastic paraparesis. Only few studies have so far been performed in large groups of hereditary spastic paraplegia (HSP) patients to determine the frequency of SPG7 mutations. Here, we report the result of a mutation screening conducted in a large cohort of 135 Italian HSP patients with the identification of six novel point mutations and one large intragenic deletion.

View Article and Find Full Text PDF

Background: Hereditary spastic paraplegia (HSP) is a group of genetically heterogeneous disorders characterized by progressive spasticity of the lower limbs. Mutations in the SPG4 gene, which encodes spastin protein, are responsible for up to 45% of autosomal dominant cases.

Objective: To search for disease-causing mutations in a large series of Italian patients with HSP.

View Article and Find Full Text PDF

Mutations in the brain-specific P/Q type Ca2+ channel alpha1 subunit gene, CACNA1A, have been identified in three clinically distinct disorders, spinocerebellar ataxia type 6 (SCA6), episodic ataxia type 2 (EA2), and familial hemiplegic migraine type 1 (FHM1). SCA6 is associated with small expansions of a CAG repeat at the 3' end of the gene, while point mutations are mostly responsible for its two allelic disorders, FHMI and EA2. From the electrophysiological point of view, while FHMI mutations lead to a gain of function [Tottene A, Fellin T, Pagnutti S, Luvisetto S, Striessnig J, Fletcher C, et al.

View Article and Find Full Text PDF