Hybrid protein-copper nanoflowers have emerged as promising materials with diverse applications in biocatalysis, biosensing, and bioremediation. Sericin, a waste biopolymer from the textile industry, has shown potential for fabricating such nanoflowers. However, the influence of the molecular weight of sericin on nanoflower morphology and peroxidase-like activity remains unexplored.
View Article and Find Full Text PDFWet spinning of silkworm silk has the potential to overcome the limitations of the natural spinning process, producing fibers with exceptional mechanical properties. However, the complexity of the extraction and spinning processes have meant that this potential has so far not been realized. The choice of silk processing parameters, including fiber degumming, dissolving, and concentration, are critical in producing a sufficiently viscous dope, while avoiding silk's natural tendency to gel via self-assembly.
View Article and Find Full Text PDFThe scale-up of laboratory procedures to industrial production is the main challenge standing between ideation and the successful introduction of novel materials into commercial products. Retaining quality while ensuring high per-batch production yields is the main challenge. Batch processing and other dynamic strategies that preserve product quality can be applied, but they typically involve a variety of experimental parameters and functions that are difficult to optimize because of interdependencies that are often antagonistic.
View Article and Find Full Text PDFIn materials science, the investigation of a large and complex experimental space is time-consuming and thus may induce bias to exclude potential solutions where little to no knowledge is available. This work presents the development of a highly hydrophobic material from an amphiphilic polymer through a novel, adaptive artificial intelligence approach. The hydrophobicity arises from the random packing of short polymer fibers into paper, a highly entropic, multistep process.
View Article and Find Full Text PDFPhenylalanine functionalised norbornene () functions as a potent, low molecular-mass ( = 333 Da) ionic organogelator with a minimum gelating concentration of 0.5 wt% in THF, -PrOH, 1,4-dioxane and -BuOH. Fibrous crystals form in the gel and X-ray crystallography identified a cation mediated helical assembly process controlled by the chirality of the phenylalanine.
View Article and Find Full Text PDFThe understanding of lipid bilayer structure and function has been advanced by the application of molecular fluorophores. However, the effects of these probe molecules on the physicochemical properties of membranes being studied are poorly understood. A quartz crystal microbalance with dissipation monitoring instrument was used in this work to investigate the impact of two commonly used fluorescent probes, 1‑palmitoyl‑2‑{12‑[(7‑nitro‑2‑1,3‑benzoxadiazol‑4‑yl)amino]dodecanoyl}‑sn‑glycero‑3‑phosphocholine (NBD-PC) and 1,2‑dipalmitoyl‑sn‑glycero‑3‑phosphoethanolamine‑n‑(lissamine rhodamine‑B‑sulfonyl) (Lis-Rhod PE), on the formation and physicochemical properties of a 1‑palmitoyl‑2‑oleoyl‑sn‑glycero‑3‑phosphocholine supported lipid bilayer (POPC-SLB).
View Article and Find Full Text PDFThe discovery of processes for the synthesis of new materials involves many decisions about process design, operation, and material properties. Experimentation is crucial but as complexity increases, exploration of variables can become impractical using traditional combinatorial approaches. We describe an iterative method which uses machine learning to optimise process development, incorporating multiple qualitative and quantitative objectives.
View Article and Find Full Text PDFWe have investigated the influence of a series of triethylammonium-based protic ionic liquid-water solutions on the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide) (PNIPAM). We find that kosmotropic anions lower the LCST of PNIPAM more dramatically when compared with chaotropic anions. In addition, we have probed the solvent properties of the hydrated protic ionic liquid solutions using (1)H NMR, polarity measurements, and solvatochromic analysis of the Kamlet-Taft parameters, β and π*.
View Article and Find Full Text PDFIn orthopedic surgery, the reattachment of tendon to bone requires suture materials that have stable and durable properties to allow time for healing at the tendon-bone interface. The suture, not rigidly restrained within the anchor eyelet, is free to move during surgery and potentially after surgery with limb motion. During such movement, the suture is subjected to bending and frictional forces that can lead to fatigue-induced failure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2012
Nylon is a relatively inert polymer. The ability to easily functionalize nylon with biomolecules will improve the utilization of nylon in biological systems. A potential use of the biofunctionalized nylon scaffolds is in devices for cell therapeutics that can specifically select cells present in small numbers, such as hematopoietic stem cells.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
October 2011
Unlabelled: The growing interest in polymeric nanofibers has been increasing the push for the development of simple and efficient nanofiber-preparation techniques. We herein describe how a conventional solution process is readapted to suit the needs for fast and efficient production of short polymeric nanofibers. Poly(ethylene-co-acrylic acid) (PEAA), a semi-crystalline polymer, was used as model.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2012
Poly(N-isopropylacrylamide) (PNIPAM) is a common thermo-responsive, water-soluble polymer, while Hercosett is a cationic resin commonly employed in the paper industry. In this paper, Hercosett™ and poly(N-isopropylacrylamide) (PNIPAM) nanoparticles were used to prepare composite films that show thermo-responsive behavior and swelling-shrinking properties in water. First, size-controlled PNIPAM hydrogel nanoparticles were synthesized.
View Article and Find Full Text PDFIn this article, we report on the preparation and cell culture performance of a novel fibrous matrix that has an interbonded fiber architecture, excellent pore interconnectivity, and controlled pore size and porosity. The fibrous matrices were prepared by combining melt-bonding of short synthetic fibers with a template leaching technique. The microcomputed tomography and scanning electron microscopy imaging verified that the fibers in the matrix were highly bonded, forming unique isotropic pore architectures.
View Article and Find Full Text PDF