If a quantum fluid is driven with enough angular momentum, at equilibrium the ground state of the system is given by a lattice of quantized vortices whose density is prescribed by the quantization of circulation. We report on the first experimental study of the Feynman-Onsager relation in a nonequilibrium polariton fluid, free to expand and rotate. Upon initially imprinting a lattice of vortices in the quantum fluid, we track the vortex core positions on picosecond timescales.
View Article and Find Full Text PDFIncompressible, homogeneous and isotropic turbulence is studied by solving the Navier-Stokes equations on a reduced set of Fourier modes, belonging to a fractal set of dimension D . By tuning the fractal dimension parameter, we study the dynamical effects of Fourier decimation on the vortex stretching mechanism and on the statistics of the velocity and the velocity gradient tensor. In particular, we show that as we move from D = 3 to D ∼ 2.
View Article and Find Full Text PDFA novel investigation of the nature of intermittency in incompressible, homogeneous, and isotropic turbulence is performed by a numerical study of the Navier-Stokes equations constrained on a fractal Fourier set. The robustness of the energy transfer and of the vortex stretching mechanisms is tested by changing the fractal dimension D from the original three dimensional case to a strongly decimated system with D=2.5, where only about 3% of the Fourier modes interact.
View Article and Find Full Text PDFKnowledge of the link between ocean hydrodynamics and distribution of small pelagic fish species is fundamental for the sustainable management of fishery resources. Both commercial and scientific communities are indeed seeking to provide services that could "connect the dots" among in situ and remote observations, numerical ocean modelling, and fisheries. In the Mediterranean Sea and, in particular, in the Sicily Channel the reproductive strategy of the European Anchovy (Engraulis encrasicolus) is strongly influenced by the oceanographic patterns, which are often visible in sea surface temperature satellite data.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2012
The breakup of small solid aggregates in homogeneous and isotropic turbulence is studied theoretically and by using direct numerical simulations at high Reynolds number, Reλ =/~ 400. We show that turbulent fluctuations of the hydrodynamic stress along the aggregate trajectory play a key role in determining the aggregate mass distribution function. The differences between turbulent and laminar flows are discussed.
View Article and Find Full Text PDFWe present the results of a numerical investigation of three-dimensional homogeneous and isotropic turbulence, stirred by a random forcing with a power-law spectrum, E(f)(k) approximately k(3-y). Numerical simulations are performed at different resolutions up to 512(3). We show that at varying the spectrum slope y, small-scale turbulent fluctuations change from a forcing independent to a forcing dominated statistics.
View Article and Find Full Text PDF