Language aptitude has recently regained interest in cognitive neuroscience. Traditional language aptitude testing included phonemic coding ability, associative memory, grammatical sensitivity and inductive language learning. Moreover, domain-general cognitive abilities are associated with individual differences in language aptitude, together with factors that have yet to be elucidated.
View Article and Find Full Text PDFBiological vision relies on representations of the physical world at different levels of complexity. Relevant features span from simple low-level properties, as contrast and spatial frequencies, to object-based attributes, as shape and category. However, how these features are integrated into coherent percepts is still debated.
View Article and Find Full Text PDFClassical studies have isolated a distributed network of temporal and frontal areas engaged in the neural representation of speech perception and production. With modern literature arguing against unique roles for these cortical regions, different theories have favored either neural code-sharing or cortical space-sharing, thus trying to explain the intertwined spatial and functional organization of motor and acoustic components across the fronto-temporal cortical network. In this context, the focus of attention has recently shifted toward specific model fitting, aimed at motor and/or acoustic space reconstruction in brain activity within the language network.
View Article and Find Full Text PDFClassical models of language localize speech perception in the left superior temporal and production in the inferior frontal cortex. Nonetheless, neuropsychological, structural and functional studies have questioned such subdivision, suggesting an interwoven organization of the speech function within these cortices. We tested whether sub-regions within frontal and temporal speech-related areas retain specific phonological representations during both perception and production.
View Article and Find Full Text PDFIn the last decades, the rapid growth of functional brain imaging methodologies allowed cognitive neuroscience to address open questions in philosophy and social sciences. At the same time, novel insights from cognitive neuroscience research have begun to influence various disciplines, leading to a turn to cognition and emotion in the fields of planning and architectural design. Since 2003, the Academy of Neuroscience for Architecture has been supporting 'neuro-architecture' as a way to connect neuroscience and the study of behavioral responses to the built environment.
View Article and Find Full Text PDF